HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Role of Proprotein Convertase Subtilisin/Kexin Type 9 in the Pathogenesis of Graves' Orbitopathy in Orbital Fibroblasts.

AbstractBackground:
The proprotein convertase subtilisin/kexin type 9 (PCSK9) has been implicated in the pathogenesis of inflammatory diseases. We sought to investigate the role of PCSK9 in the pathogenesis of Graves' orbitopathy (GO) and whether it may be a legitimate target for treatment.
Methods:
The PCSK9 was compared between GO (n=11) and normal subjects (n=7) in orbital tissue explants using quantitative real-time PCR, and in cultured interleukin-1β (IL-1β)-treated fibroblasts using western blot. Western blot was used to identify the effects of PCSK9 inhibition on IL-1β-induced pro-inflammatory cytokines production and signaling molecules expression as well as levels of adipogenic markers and oxidative stress-related proteins. Adipogenic differentiation was identified using Oil Red O staining. The plasma PCSK9 concentrations were compared between patients with GO (n=44) and healthy subjects (n=26) by ELISA.
Results:
The PCSK9 transcript level was higher in GO tissues. The depletion of PCSK9 blunted IL-1β-induced expression of intercellular adhesion molecule 1 (ICAM-1), IL-6, IL-8, and cyclooxygenase-2 (COX-2) in GO and non-GO fibroblasts. The levels of activated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and phosphorylated forms of Akt and p38 were diminished when PCSK9 was suppressed in GO fibroblasts. Decreases in lipid droplets and attenuated levels of peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer-binding protein β (C/EBPβ), and leptin as well as hypoxia-inducible factor 1α (HIF-1α), manganese superoxide dismutase (MnSOD), thioredoxin (Trx), and heme oxygenase-1 (HO-1) were noted when PCSK9 was suppressed during adipocyte differentiation. The plasma PCSK9 level was significantly higher in GO patients and correlated with level of thyrotropin binding inhibitory immunoglobulin (TBII) and the clinical activity score (CAS).
Conclusions:
PCSK9 plays a significant role in GO. The PCSK9 inhibition attenuated the pro-inflammatory cytokines production, oxidative stress, and fibroblast differentiation into adipocytes. PCSK9 may serve as a therapeutic target and biomarker for GO.
AuthorsGa Eun Lee, Jinjoo Kim, Jihei Sara Lee, JaeSang Ko, Eun Jig Lee, Jin Sook Yoon
JournalFrontiers in endocrinology (Front Endocrinol (Lausanne)) Vol. 11 Pg. 607144 ( 2020) ISSN: 1664-2392 [Print] Switzerland
PMID33488522 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2021 Lee, Kim, Lee, Ko, Lee and Yoon.
Chemical References
  • Cell Adhesion Molecules
  • Cytokines
  • IL1B protein, human
  • Interleukin-1beta
  • PCSK9 protein, human
  • Proprotein Convertase 9
Topics
  • Adipocytes
  • Adipogenesis (genetics)
  • Adult
  • Cell Adhesion Molecules (metabolism)
  • Cell Differentiation (genetics)
  • Cells, Cultured
  • Cytokines (metabolism)
  • Female
  • Fibroblasts (metabolism)
  • Graves Ophthalmopathy (genetics, metabolism)
  • Humans
  • Interleukin-1beta (pharmacology)
  • Male
  • Middle Aged
  • Orbit (cytology)
  • Oxidative Stress (genetics)
  • Proprotein Convertase 9 (drug effects, genetics, metabolism)
  • Young Adult

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: