HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Antagonistic effect of vitamin E on nAl2O3-induced exacerbation of Th2 and Th17-mediated allergic asthma via oxidative stress.

Abstract
Some basic research has shown that nanomaterials can aggravate allergic asthma. However, its potential mechanism is insufficient. Based on the research that alumina nanopowder (nAl2O3) has been reported to cause lung tissue damage, the purpose of this study was to explore the relationship between nAl2O3 and allergic asthma as well as its molecular mechanism. In this study, Balb/c mice were sensitized with ovalbumin (OVA) to construct the allergic asthma model while intratracheally administered 0.5, 5 or 50 mg kg-1·day-1 nAl2O3 for 3 weeks. It was observed that exposure to nAl2O3 exacerbated airway hyperresponsiveness (AHR), airway remodeling, and inflammation cell infiltration, leading to lung function damage in mice. Results revealed that nAl2O3 could increase ROS levels and decrease GSH levels in lung tissue, promote the increases of the T-IgE, TGF-β, IL-1β and IL-6 levels, stimulate the overexpression of transcription factors GATA-3 and RORγt, decrease the levels of IFN-γ and IL-10 and increase the levels of IL-4 and IL-17A, resulting in the imbalance of Th1/Th2 and Treg/Th17 immune responses. In addition, antioxidant Vitamin E (Vit E) could alleviate asthma-like symptoms through blocking oxidative stress. The study displayed that exposure of nAl2O3 deteriorated allergic asthma through promoting the imbalances of Th1/Th2 and Treg/Th17.
AuthorsHaiyan Cui, Jiawei Huang, Manman Lu, Qian Zhang, Wei Qin, Yun Zhao, Xianxian Lu, Jiting Zhang, Zhuge Xi, Rui Li
JournalEnvironmental pollution (Barking, Essex : 1987) (Environ Pollut) Vol. 252 Issue Pt B Pg. 1519-1531 (Sep 2019) ISSN: 1873-6424 [Electronic] England
PMID31277021 (Publication Type: Journal Article)
CopyrightCopyright © 2019. Published by Elsevier Ltd.
Chemical References
  • Antioxidants
  • Interleukin-17
  • Vitamin E
  • Interleukin-4
  • Ovalbumin
  • Aluminum Oxide
Topics
  • Aluminum Oxide (toxicity)
  • Animals
  • Antioxidants (pharmacology)
  • Asthma (chemically induced, immunology, prevention & control)
  • Interleukin-17 (immunology)
  • Interleukin-4 (immunology)
  • Mice
  • Mice, Inbred BALB C
  • Nanoparticles (toxicity)
  • Ovalbumin (immunology)
  • Oxidative Stress (drug effects, immunology)
  • T-Lymphocytes, Regulatory (immunology)
  • Th17 Cells (drug effects, immunology)
  • Th2 Cells (drug effects, immunology)
  • Vitamin E (pharmacology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: