HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

A novel, rapid strategy to form dendritomas from human dendritic cells and hepatocellular carcinoma cell line HCCLM3 cells using mature dendritic cells derived from human peripheral blood CD14+ monocytes within 48 hours of in vitro culture.

AbstractAIM:
Dendritomas formed by fusing cancer cells to dendritic cells have already been applied to clinical treatment trial of several types of cancers. Dendritic cells for the fusion in most trials and experiments were from blood monocytes in standard 7-d protocol culture, which requires 5-7 d of culture with granulocyte-macrophage-colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4), followed by 2-3 d of activation with a combination of proinflammatory mediators such as tumor necrosis factoralpha (TNFalpha), interleukin-1beta (IL-1beta), interleukin-6 (IL-6) and prostaglandin E(2) (PGE(2)). One study showed that mature monocyte-derived dendritic cells could be obtained within 48 h of in vitro culture with the same protocol as standard 7-d culture and referred to as FastDCs. Here we aimed to fuse human hepatocellular carcinoma cell line HCCLM3 cells with mature monocyte-derived dendritic cells within 48 h of in vitro culture (FastDC).
METHODS:
HCCLM3 cells were cultured in RPMI 1640 with 150 mL/L fetal calf serum (FCS). CD14+monocytes from healthy human peripheral blood were purified with MACS CD14 isolation kit and cultured in six-well plates in fresh complete DC medium containing RPMI-1640, 20 mL/L heat inactivated human AB serum, 2 mmol/L L-glutamine, 100 microg/mL gentamicin, 1 000 U/mL GM-CSF and 500 U/mL IL-4 for 24 h, then proinflammatory mediators such as TNFalpha (1 000 U/mL), IL-1beta (10 ng/mL), IL-6 (10 ng/mL) and PGE(2) (1 microg/mL) were supplemented for another 24 h, and thus mature FastDCs were generated. HCCLM3 cells and FastDCs were labeled with red fluorescent dye PKH26-GL and green fluorescent dye PKH67-GL respectively. After the red fluorescent-stained HCCLM3 cells were irradiated with 50 Gy, FastDCs and irradiated HCCLM3 cells were fused in 500 mL/L polyethylene glycol(PEG)+100 mL/L dimethyl sulfoxide (DMSO) to generate novel dendritomas. The FastDCs and novel dendritomas were immunostained with anti-CD80, anti-CD86, anti-CD83, anti-HLA-DR mAbs and analyzed by fluorescence-activated cell sorting (FACS). Novel dendritomas were nucleus-stained with Hoechst 33258 and analyzed by confocal laser scanning microscopy.
RESULTS:
Mature FastDCs with highly expressed surface markers CD80, CD86, CD83 and HLA-DR were generated within 48 h in vitro. Novel dendritomas with dual red-green fluorescence were constructed fast and successfully, and FACS analysis showed that the fusion efficiency was 24.27% and the novel dendritomas expressed the same activation markers as FastDCs. Confocal laser scanning microscopy analysis showed representative images of dendritomas.
CONCLUSION:
Dendritomas can be formed fast with mature FastDCs from healthy human peripheral blood monocytes (PBMC) by incubation with GM-CSF and IL-4 for 24 h and by activation with proinflammatory mediators for an additional period of 24 h. Owing to shorter time required for in vitro DCs development, the generation of these novel dendritomas reduced labor and cost. This rapid method for formation of dendritomas may represent a new strategy for immunotherapy of hepatocellular carcinoma.
AuthorsXin Guan, Ji-Run Peng, Lan Yuan, Hui Wang, Yu-Hua Wei, Xi-Sheng Leng
JournalWorld journal of gastroenterology (World J Gastroenterol) Vol. 10 Issue 24 Pg. 3564-8 (Dec 15 2004) ISSN: 1007-9327 [Print] United States
PMID15534907 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Lipopolysaccharide Receptors
Topics
  • Carcinoma, Hepatocellular
  • Cell Fusion (methods)
  • Cell Line, Tumor (cytology)
  • Dendritic Cells (pathology)
  • Flow Cytometry
  • Humans
  • In Vitro Techniques
  • Lipopolysaccharide Receptors (metabolism)
  • Liver Neoplasms
  • Microscopy, Confocal
  • Monocytes (cytology, metabolism)
  • Time Factors

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: