HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Enzyme-catalyzed activation of anticancer prodrugs.

Abstract
The rationale fo the development of prodrugs relies upon delivery of higher concentrations of a drug to target cells compared to administration of the drug itself. In the last decades, numerous prodrugs that are enzymatically activated into anti-cancer agents have been developed. This review describes the most important enzymes involved in prodrug activation notably with respect to tissue distribution, up-regulation in tumor cells and turnover rates. The following endogenous enzymes are discussed: aldehyde oxidase, amino acid oxidase, cytochrome P450 reductase, DT-diaphorase, cytochrome P450, tyrosinase, thymidylate synthase, thymidine phosphorylase, glutathione S-transferase, deoxycytidine kinase, carboxylesterase, alkaline phosphatase, beta-glucuronidase and cysteine conjugate beta-lyase. In relation to each of these enzymes, several prodrugs are discussed regarding organ- or tumor-selective activation of clinically relevant prodrugs of 5-fluorouracil, axazaphosphorines (cyclophosphamide, ifosfamide, and trofosfamide), paclitaxel, etoposide, anthracyclines (doxorubicin, daunorubicin, epirubicin), mercaptopurine, thioguanine, cisplatin, melphalan, and other important prodrugs such as menadione, mitomycin C, tirapazamine, 5-(aziridin-1-yl)-2,4-dinitrobenzamide, ganciclovir, irinotecan, dacarbazine, and amifostine. In addition to endogenous enzymes, a number of nonendogenous enzymes, used in antibody-, gene-, and virus-directed enzyme prodrug therapies, are described. It is concluded that the development of prodrugs has been relatively successful; however, all prodrugs lack a complete selectivity. Therefore, more work is needed to explore the differences between tumor and nontumor cells and to develop optimal substrates in terms of substrate affinity and enzyme turnover rates fo prodrug-activating enzymes resulting in more rapid and selective cleavage of the prodrug inside the tumor cells.
AuthorsMartijn Rooseboom, Jan N M Commandeur, Nico P E Vermeulen
JournalPharmacological reviews (Pharmacol Rev) Vol. 56 Issue 1 Pg. 53-102 (Mar 2004) ISSN: 0031-6997 [Print] United States
PMID15001663 (Publication Type: Journal Article, Review)
Chemical References
  • Antineoplastic Agents
  • Prodrugs
Topics
  • Animals
  • Antineoplastic Agents (metabolism, therapeutic use)
  • Catalysis (drug effects)
  • Enzyme Activation (drug effects)
  • Humans
  • Neoplasms (drug therapy, enzymology)
  • Prodrugs (metabolism, therapeutic use)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: