HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Tumor necrosis factor-related apoptosis-inducing ligand induces caspase-dependent interleukin-8 expression and apoptosis in human astroglioma cells.

Abstract
Among the tumor necrosis factor (TNF) family of cytokines, FasL and TNF-related apoptosis-inducing ligand (TRAIL) are known to induce cell death via caspase activation. Recently, other biological functions of these death ligands have been postulated in vitro and in vivo. It was previously shown that Fas ligation induces chemokine expression in human glioma cells. In this study, we investigated whether the TRAIL-DR5 system transduces signals similar to those induced by other TNF family ligands and receptors. To address this issue, two human glioma cell lines, CRT-MG and U87-MG, were used, and an agonistic antibody against DR5 (TRA-8) and human recombinant TRAIL were used to ligate DR5. We demonstrate that DR5 ligation by either TRAIL or TRA-8 induces two functional outcomes, apoptosis and expression of the chemokine interleukin-8 (IL-8); the nonspecific caspase inhibitor Boc-D-Fmk blocks both TRAIL-mediated cell death and IL-8 production; the caspase 3-specific inhibitor z-DEVD-Fmk suppresses TRAIL-mediated apoptosis but not IL-8 induction; caspase 1- and 8-specific inhibitors block both TRAIL-mediated cell death and IL-8 production; and DR5 ligation by TRAIL mediates AP-1 and NF-kappaB activation, which can be inhibited by caspase 1- and 8-specific inhibitors. These findings collectively indicate that DR5 ligation on human glioma cells leads to apoptosis and that the activation of AP-1 and NF-kappaB leads to the induction of IL-8 expression; these responses are dependent on caspase activation. Therefore, the TRAIL-DR5 system has a role not only as an inducer of apoptotic cell death but also as a transducer for proinflammatory and angiogenic signals in human brain tumors.
AuthorsChulhee Choi, Olaf Kutsch, Jinseu Park, Tong Zhou, Dai-Wu Seol, Etty N Benveniste
JournalMolecular and cellular biology (Mol Cell Biol) Vol. 22 Issue 3 Pg. 724-36 (Feb 2002) ISSN: 0270-7306 [Print] United States
PMID11784850 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, P.H.S.)
Chemical References
  • Antibodies, Monoclonal
  • Apoptosis Regulatory Proteins
  • Interleukin-8
  • Membrane Glycoproteins
  • RNA, Messenger
  • RNA, Neoplasm
  • Receptors, TNF-Related Apoptosis-Inducing Ligand
  • Receptors, Tumor Necrosis Factor
  • TNF-Related Apoptosis-Inducing Ligand
  • TNFRSF10B protein, human
  • TNFSF10 protein, human
  • Tumor Necrosis Factor-alpha
  • CASP3 protein, human
  • Caspase 3
  • Caspases
Topics
  • Antibodies, Monoclonal (pharmacology)
  • Apoptosis
  • Apoptosis Regulatory Proteins
  • Astrocytoma (genetics, pathology, physiopathology)
  • Brain Neoplasms (genetics, pathology, physiopathology)
  • Caspase 3
  • Caspases (metabolism)
  • Enzyme Activation
  • Humans
  • Interleukin-8 (biosynthesis, genetics)
  • Membrane Glycoproteins (antagonists & inhibitors, genetics, physiology)
  • Models, Biological
  • RNA, Messenger (genetics, metabolism)
  • RNA, Neoplasm (genetics, metabolism)
  • Receptors, TNF-Related Apoptosis-Inducing Ligand
  • Receptors, Tumor Necrosis Factor (antagonists & inhibitors, genetics, physiology)
  • Signal Transduction
  • TNF-Related Apoptosis-Inducing Ligand
  • Transfection
  • Tumor Cells, Cultured
  • Tumor Necrosis Factor-alpha (antagonists & inhibitors, genetics, physiology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: