HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Effects of α7 Nicotinic Acetylcholine Receptor Positive Allosteric Modulator on BDNF, NKCC1 and KCC2 Expression in the Hippocampus following Lipopolysaccharide-Induced Allodynia and Hyperalgesia in a Mouse Model of Inflammatory Pain.

AbstractBACKGROUND & OBJECTIVES:
Hyperalgesia and allodynia are frequent symptoms of inflammatory pain. Neuronal excitability induced by the Brain-Derived Neurotrophic Factor (BDNF)-tyrosine receptor kinase B (TrkB) cascade has a role in the modulation of inflammatory pain. The effects of 3a,4,5,9b-tetrahydro-4-(1-naphthalenyl)-3H-cyclopentan[c]quinoline-8-sulfonamide (TQS), an α7 nicotinic Acetylcholine Receptor Positive Allosteric Modulator (nAChR PAM), on hippocampal BDNF, cation-chloride cotransporters, NKCC1 and KCC2, expression in inflammatory pain are not known. The objective of the study was to determine the effects of TQS on BDNF, NKCC1, and KCC2 expression in the hippocampus following lipopolysaccharide (LPS)-induced allodynia and hyperalgesia in a mouse model of inflammatory pain.
METHODS:
Mice were treated with TQS followed by LPS (1 mg/kg, ip) administration. The effects of TQS on mRNA and BDNF in the hippocampus were examined using qRT-PCR and Western blot, respectively. Immunoreactivity of BDNF, NKCC1, and KCC2 in the hippocampus was measured after LPS administration using immunofluorescence assay. Allodynia and hyperalgesia were determined using von Frey filaments and hot plate, respectively.
RESULTS:
The LPS (1 mg/kg) upregulates mRNA of BDNF and downregulates mRNA of KCC2 in the hippocampus and pretreatment of TQS (4 mg/kg) reversed the effects induced by LPS. In addition, the TQS decreased LPS-induced upregulation of BDNF and p-NKCC1 immunoreactivity in the dentate gyrus and CA1 region of the hippocampus. BDNF receptor (TrkB) antagonist, ANA12 (0.50 mg/kg), and NKCC1 inhibitor bumetanide (30 mg/kg) reduced LPS-induced allodynia and hyperalgesia. Blockade of TrkB with ANA12 (0.25 mg/kg) enhanced the effects of TQS (1 mg/kg) against LPS-induced allodynia and hyperalgesia. Similarly, bumetanide (10 mg/kg) enhanced the effects of TQS (1 mg/kg) against allodynia and hyperalgesia.
CONCLUSION:
These results suggest that antinociceptive effects of α7 nAChR PAM are associated with downregulation of hippocampal BDNF and p-NKCC1 and upregulation of KCC2 in a mouse model of inflammatory pain.
AuthorsMuzaffar Abbas, Sami Alzarea, Roger L Papke, Shafiqur Rahman
JournalCNS & neurological disorders drug targets (CNS Neurol Disord Drug Targets) Vol. 20 Issue 4 Pg. 366-377 ( 2021) ISSN: 1996-3181 [Electronic] United Arab Emirates
PMID33380307 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
CopyrightCopyright© Bentham Science Publishers; For any queries, please email at [email protected].
Chemical References
  • Brain-Derived Neurotrophic Factor
  • Lipopolysaccharides
  • alpha7 Nicotinic Acetylcholine Receptor
Topics
  • Allosteric Regulation (drug effects)
  • Animals
  • Brain-Derived Neurotrophic Factor (metabolism)
  • Disease Models, Animal
  • Hippocampus (drug effects)
  • Hyperalgesia (metabolism)
  • Inflammation (metabolism)
  • Lipopolysaccharides (metabolism)
  • Male
  • Mice
  • Microglia (metabolism)
  • Pain (metabolism)
  • alpha7 Nicotinic Acetylcholine Receptor (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: