HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Retinal oximetry: Metabolic imaging for diseases of the retina and brain.

Abstract
Retinal oximetry imaging of retinal blood vessels measures oxygen saturation of hemoglobin. The imaging technology is non-invasive and reproducible with remarkably low variability on test-retest studies and in healthy cohorts. Pathophysiological principles and novel biomarkers in several retinal diseases have been discovered, as well as possible applications for systemic and brain disease. In diabetic retinopathy, retinal venous oxygen saturation is elevated and arteriovenous difference progressively reduced in advanced stages of retinopathy compared with healthy persons. This correlates with pathophysiology of diabetic retinopathy where hypoxia stimulates VEGF production. Laser treatment and vitrectomy both improve retinal oximetry values, which correlate with clinical outcome. The oximetry biomarker may allow automatic measurement of severity of diabetic retinopathy and predict its response to treatment. Central retinal vein occlusion is characterized by retinal hypoxia, which is evident in retinal oximetry. The retinal hypoxia seen on oximetry correlates with the extent of peripheral ischemia, visual acuity and thickness of macular edema. This biomarker may help diagnose and measure severity of vein occlusion and degree of retinal ischemia. Glaucomatous retinal atrophy is associated with reduced oxygen consumption resulting in reduced arteriovenous difference and higher retinal venous saturation. The oximetry findings correlate with worse visual field, thinner nerve fiber layer and smaller optic disc rim. This provides an objective biomarker for glaucomatous damage. In retinitis pigmentosa, an association exists between advanced atrophy, worse visual field and higher retinal venous oxygen saturation, lower arteriovenous difference. This biomarker may allow measurement of severity and progression of retinitis pigmentosa and other atrophic retinal diseases. Retinal oximetry offers visible light imaging of systemic and central nervous system vessels. It senses hypoxia in cardiac and pulmonary diseases. Oximetry biomarkers have been discovered in Alzheimer's disease and multiple sclerosis and oxygen levels in the retina correspond well with brain.
AuthorsEinar Stefánsson, Olof Birna Olafsdottir, Thorunn S Eliasdottir, Wouter Vehmeijer, Anna Bryndis Einarsdottir, Toke Bek, Thomas Lee Torp, Jakob Grauslund, Thor Eysteinsson, Robert Arnar Karlsson, Karel Van Keer, Ingeborg Stalmans, Evelien Vandewalle, Margarita G Todorova, Martin Hammer, Gerhard Garhöfer, Leopold Schmetterer, Martin Šín, Sveinn Hakon Hardarson
JournalProgress in retinal and eye research (Prog Retin Eye Res) Vol. 70 Pg. 1-22 (05 2019) ISSN: 1873-1635 [Electronic] England
PMID30999027 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Review)
CopyrightCopyright © 2019. Published by Elsevier Ltd.
Chemical References
  • Oxygen
Topics
  • Brain Diseases (diagnostic imaging, physiopathology)
  • Cerebrovascular Circulation (physiology)
  • Humans
  • Oximetry
  • Oxygen (blood)
  • Retinal Diseases (diagnostic imaging, physiopathology)
  • Retinal Vessels (physiopathology)
  • Visual Acuity
  • Visual Fields

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: