HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Mild Therapeutic Hypothermia Protects the Brain from Ischemia/Reperfusion Injury through Upregulation of iASPP.

Abstract
Mild therapeutic hypothermia, a robust neuroprotectant, reduces neuronal apoptosis, but the precise mechanism is not well understood. Our previous study showed that a novel inhibitor of an apoptosis-stimulating protein of p53 (iASPP) might be involved in neuronal death after stroke. The aim of this study was to confirm the role of iASPP after stroke treated with mild therapeutic hypothermia. To address this, we mimicked ischemia/reperfusion injury in vitro by using oxygen-glucose deprivation/reperfusion (OGD/R) in primary rat neurons. In our in vivo approach, we induced middle cerebral artery occlusion (MCAO) for 60 min in C57/B6 mice. From the beginning of ischemia, focal mild hypothermia was applied for two hours. To evaluate the role of iASPP, small interfering RNA (siRNA) was injected intracerebroventricularly. Our results showed that mild therapeutic hypothermia increased the expression of iASPP and decreased the expression of its targets, Puma and Bax, and an apoptosis marker, cleaved caspase-3, in primary neurons under OGD/R. Increased iASPP expression and decreased ASPP1/2 expression were observed under hypothermia treatment in MCAO mice. iASPP siRNA (iASPPi) or hypothermia plus iASPPi application increased infarct volume, apoptosis and aggravated the neurological deficits in MCAO mice. Furthermore, iASPPi downregulated iASPP expression, and upregulated the expression of proapoptotic effectors, Puma, Bax and cleaved caspase-3, in mice after stroke treated with mild therapeutic hypothermia. In conclusion, mild therapeutic hypothermia protects against ischemia/reperfusion brain injury in mice by upregulating iASPP and thus attenuating apoptosis. iASPP may be a potential target in the therapy of stroke.
AuthorsXiangrong Liu, Shaohong Wen, Shunying Zhao, Feng Yan, Shangfeng Zhao, Di Wu, Xunming Ji
JournalAging and disease (Aging Dis) Vol. 9 Issue 3 Pg. 401-411 (Jun 2018) ISSN: 2152-5250 [Print] United States
PMID29896428 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: