HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Palmitic acid, but not high-glucose, induced myocardial apoptosis is alleviated by N‑acetylcysteine due to attenuated mitochondrial-derived ROS accumulation-induced endoplasmic reticulum stress.

Abstract
Pharmacological inhibition of reactive oxygen species (ROS) is a potential strategy to prevent diabetes-induced cardiac dysfunction. This study was designed to investigate precise effects of antioxidant N‑acetylcysteine (NAC) in alleviating diabetic cardiomyopathy (DCM). Echocardiography and histologic studies were performed 12 weeks after streptozocin injection. Protein levels involved in endoplasmic reticulum stress (ERS) and apoptosis were analyzed by western blotting in diabetic hearts or high-glucose (HG, 30 mM)- and palmitic acid (PA, 300 μM)-cultured neonatal rat cardiomyocytes (NRCMs). ROS generation and structural alterations of mitochondria were also assessed. We report that NAC alleviated diabetes-induced cardiac abnormality, including restored ejection fraction (EF %), fraction shortening (FS %), peak E to peak A ratio (E/A) and reduced cardiac hypertrophy and fibrosis. These effects were concomitant with blocked ERS and apoptosis, as evidenced by inactivation of phosphorylated inositol-requiring enzyme-1α (IRE1α)/spliced X-box binding protein 1 (XBP1), phosphorylated protein kinase-like kinase (PERK)/phosphorylated eukaryotic initiation factor 2α (eIF2α) and glucose-regulated protein 78 (GRP78)/activating transcription factor 6 (ATF6α)/C/EBP homologous protein (CHOP) pathways, as well as suppressed Bcl-2-associated X protein (BAX)/B-cell lymphoma-2 (Bcl-2) and cleaved caspase 3 expressions. Mechanistically, PA mediated excessive mitochondrial ROS generation and oxidative stress, which were antagonized by NAC and Mito-TEMPO, a mitochondrial ROS inhibitor. No effects were noted by addition of apocynin, a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, and NADPH oxidase 4 (NOX 4) and NOX 2 expressions were not altered, indicating that PA-induced ROS generation is independent of NADPH oxidases. Most intriguingly, HG failed to promote ROS production despite its ability to promote ERS and apoptosis in NRCMs. Collectively, these findings indicate that NAC primarily abrogates PA-mediated mitochondrial ROS through ERS and therefore alleviates myocardial apoptosis but has little effect on HG-induced cardiac injury. This uncovers a potential role for NAC in formulating novel cardioprotective strategies in DCM patients.
AuthorsYang He, Lingyun Zhou, Zhiqiang Fan, Shikun Liu, Weijin Fang
JournalCell death & disease (Cell Death Dis) Vol. 9 Issue 5 Pg. 568 (05 01 2018) ISSN: 2041-4889 [Electronic] England
PMID29752433 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Reactive Oxygen Species
  • Palmitic Acid
  • Glucose
  • Acetylcysteine
Topics
  • Acetylcysteine (pharmacology)
  • Animals
  • Apoptosis (drug effects)
  • Diabetes Mellitus, Experimental (metabolism, pathology)
  • Endoplasmic Reticulum Stress (drug effects)
  • Glucose (pharmacology)
  • Male
  • Mitochondria, Heart (metabolism, pathology)
  • Myocardium (metabolism, pathology)
  • Myocytes, Cardiac (metabolism, pathology)
  • Palmitic Acid (pharmacology)
  • Rats
  • Rats, Sprague-Dawley
  • Reactive Oxygen Species (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: