HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Thrombomodulin protects against lung damage created by high level of oxygen with large tidal volume mechanical ventilation in rats.

AbstractBACKGROUND:
Ventilator-induced lung injury (VILI) is associated with inflammatory responses in the lung. Thrombomodulin (TM), a component of the coagulation system, has anticoagulant and anti-inflammatory effects. We hypothesized that the administration of recombinant human soluble TM (rhsTM) would block the development of lung injury.
METHODS:
Lung injury was induced by high tidal volume ventilation for 2 h with 100% oxygen in rats. Rats were ventilated with a tidal volume of 35 ml/kg with pretreatment via a subcutaneous injection of 3 mg/kg rhsTM (HV (high tidal volume)/TM) or saline (HV/SAL) 12 h before mechanical ventilation. Rats ventilated with a tidal volume of 6 ml/kg under 100% oxygen with rhsTM (LV (low tidal volume)/TM) or saline (LV/SAL) were used as controls. Lung protein permeability was determined by Evans blue dye (EBD) extravasation.
RESULTS:
Lung injury was successfully induced in the HV/SAL group compared with the LV/SAL group, as shown by the significant decrease in arterial oxygen pressure (PaO2), increased protein permeability, and increase in mean pulmonary artery pressure (mPAP) and ratio of mean pulmonary artery pressure to mean artery pressure (Pp/Ps). Treatment of rats with lung injury with rhsTM (HV/TM) significantly attenuated the decrease in PaO2 and the increase in both mPAP and Pp/Ps, which was associated with a decrease in the lung protein permeability. Lung tissue mRNA expressions of interleukin (IL)-1α, IL-1β, IL-6, tumor necrosis factor-α, and macrophage inflammatory protein (MIP)-2 were significantly higher in HV than in LV rats. Rats with VILI treated with rhsTM (HV/TM) had significantly lower mRNA expressions of IL-1α, IL-1β, IL-6, and MIP-2 than those expressions in HV/SAL rats.
CONCLUSIONS:
Administration of rhsTM may prevent the development of lung injury created by high level of oxygen with large tidal volume mechanical ventilation, which has concomitant decrease in proinflammatory cytokine and chemokine expression in the lung.
AuthorsYoshiaki Iwashita, Erquan Zhang, Junko Maruyama, Ayumu Yokochi, Yasuharu Yamada, Hirofumi Sawada, Yoshihide Mitani, Hiroshi Imai, Koji Suzuki, Kazuo Maruyama
JournalJournal of intensive care (J Intensive Care) Vol. 2 Issue 1 Pg. 57 ( 2014) ISSN: 2052-0492 [Print] England
PMID25705415 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: