HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Herpes simplex virus vector-mediated gene delivery of glutamic acid decarboxylase reduces detrusor overactivity in spinal cord-injured rats.

Abstract
We examined whether replication-defective herpes simplex virus (HSV) vectors encoding the 67 kDa form of the glutamic acid decarboxylase (GAD(67)) gene product, the gamma-aminobutyric acid (GABA) synthesis enzyme, can suppress detrusor overactivity (DO) in rats with spinal cord injury (SCI). One week after spinalization, HSV vectors expressing GAD and green fluorescent protein (GFP) (HSV-GAD) were injected into the bladder wall. Rats with SCI without HSV injection (HSV-untreated) and those injected with lacZ-encoding reporter gene HSV vectors (HSV-LacZ) were used as controls. Three weeks after viral injection, continuous cystometry was performed under awake conditions in all three groups. In the HSV-GAD group, the number and amplitude of non-voiding contractions (NVCs) were significantly decreased (40-45% and 38-40%, respectively) along with an increase in voiding efficiency, compared with HSV-untreated and HSV-LacZ groups, but micturition pressure was not different among the three groups. Intrathecal application of bicuculline partly reversed the decreased number and amplitude of NVCs, and decreased voiding efficiency in the HSV-GAD group. In the HSV-GAD group, GAD(67) mRNA and protein levels were significantly increased in the L6-S1 dorsal root ganglia (DRG) compared with the HSV-LacZ group, while 57% of DRG cells were GFP-positive, and these neurons showed increased GAD(67)-like immunoreactivity compared with the HSV-LacZ group. These results indicate that GAD gene therapy effectively suppresses DO after SCI predominantly through the activation of spinal GABA(A) receptors. Thus, HSV-based GAD gene transfer to bladder afferent pathways may represent a novel approach for treatment of neurogenic DO.
AuthorsM Miyazato, K Sugaya, W F Goins, D Wolfe, J R Goss, M B Chancellor, W C de Groat, J C Glorioso, N Yoshimura
JournalGene therapy (Gene Ther) Vol. 16 Issue 5 Pg. 660-8 (May 2009) ISSN: 1476-5462 [Electronic] England
PMID19225548 (Publication Type: Evaluation Study, Journal Article, Research Support, N.I.H., Extramural)
Chemical References
  • RNA, Messenger
  • Glutamate Decarboxylase
  • glutamate decarboxylase 1
Topics
  • Animals
  • Feasibility Studies
  • Female
  • Gene Expression (genetics)
  • Genetic Therapy (methods)
  • Genetic Vectors
  • Glutamate Decarboxylase (genetics, metabolism)
  • RNA, Messenger (genetics)
  • Rats
  • Rats, Sprague-Dawley
  • Simplexvirus (genetics)
  • Spinal Cord Injuries (complications)
  • Transgenes
  • Urinary Bladder (physiopathology)
  • Urinary Bladder, Overactive (etiology, physiopathology, therapy)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: