HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Role of sortilin 1 (SORT1) on lipid metabolism in bovine liver.

Abstract
High circulating concentrations of fatty acids cause triacylglycerol (TAG) accumulation in hepatocytes of dairy cows, a common metabolic disorder after calving. Low secretion of apolipoprotein B (APOB) and very low density lipoprotein (VLDL) are thought to be the major factors for TAG accumulation in hepatocytes. Recent data in nonruminant models revealed that sortilin 1 (SORT1) is a key regulator of VLDL secretion in part due to its ability to bind APOB. Thus, SORT1 could play a role in the susceptibility of dairy cows to develop fatty liver. To gain mechanistic insights in vivo and in vitro, we performed experiments using liver biopsies or isolated primary hepatocytes. For the in vivo study, blood and liver samples were collected from healthy multiparous dairy cows (n = 6; 9.0 ± 2.1 d in milk) and cows with fatty liver (n = 6; 9.7 ± 2.2 d in milk). In vitro, hepatocytes isolated from 4 healthy female calves (1 d old, 42-51 kg) were challenged with (fatty acids) or without (control) a 1.2 mM mixture of fatty acids in an attempt to induce metabolic stress. Furthermore, hepatocytes were treated with empty adenovirus vectors (Ad-GFP) or SORT1 overexpressing adenovirus (Ad-SORT1) for 6 h, or SORT1 inhibitor for 2 h followed by a challenge with (Ad-GFP + fatty acids, Ad-SORT1 + fatty acids, or SORT1 inhibitor + fatty acids) or without (Ad-GFP, Ad-SORT1, or SORT1 inhibitor) the 1.2 mM mixture of fatty acids for 12 h. Data from liver biopsies were compared using a 2-tailed unpaired Student's t-test. Data from calf hepatocytes were analyzed by one-way ANOVA. Data revealed that both fatty liver and in vitro challenge with fatty acids were associated with greater concentrations of TAG and mRNA and protein abundance of SORT1, SREBF1, FASN, and ACACA. In contrast, mRNA and protein abundance of CPT1A and APOB, and mRNA abundance of MTTP were markedly lower. Compared with fatty acid challenge alone, SORT1 overexpression led to greater concentration of TAG and mRNA abundance of SREBF1, FASN, ACACA, DGAT1, and DGAT2, and protein abundance of SREBF1, FASN, and ACACA. In contrast, concentration of secreted VLDL-APOB and mRNA abundance of APOB and MTTP, and protein abundance of CPT1A, APOB, and MTTP were lower. Compared with fatty acid challenge alone, SORT1 inhibitor + fatty acids led to lower concentrations of TAG and mRNA abundance of SREBF1, FASN, and DGAT2, and protein abundance of FASN, ACACA, and DGAT1. Concentrations of secreted VLDL-APOB and mRNA abundance of CPT1A and protein abundance of CPT1A and APOB were greater. Overall, in vitro data suggested that greater SORT1 abundance induced by exogenous fatty acids caused a reduction in VLDL-APOB secretion and increased hepatocyte TAG synthesis. Such mechanism was also apparent in tissue from cows with fatty liver. Thus, targeted downregulation of hepatic SORT1 could represent a viable mechanism to unload lipid during conditions where the influx of fatty acids increases markedly.
AuthorsWei Yang, Shuang Wang, Juan J Loor, Qianming Jiang, Changhong Gao, Mingmao Yang, Yan Tian, Wenwen Fan, Yingying Zhao, Bingbing Zhang, Chuang Xu
JournalJournal of dairy science (J Dairy Sci) Vol. 105 Issue 6 Pg. 5420-5434 (Jun 2022) ISSN: 1525-3198 [Electronic] United States
PMID35469640 (Publication Type: Journal Article)
Copyright© 2022, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Chemical References
  • Adaptor Proteins, Vesicular Transport
  • Apolipoproteins B
  • Fatty Acids
  • Lipoproteins, VLDL
  • RNA, Messenger
  • Triglycerides
  • sortilin
Topics
  • Adaptor Proteins, Vesicular Transport
  • Animals
  • Apolipoproteins B
  • Cattle
  • Fatty Acids (metabolism)
  • Fatty Liver (veterinary)
  • Female
  • Lipid Metabolism
  • Lipoproteins, VLDL (metabolism)
  • Liver (metabolism)
  • RNA, Messenger (metabolism)
  • Triglycerides (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: