HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Thioredoxin interacting protein, a key molecular switch between oxidative stress and sterile inflammation in cellular response.

Abstract
Tissue and systemic inflammation have been the main culprit behind the cellular response to multiple insults and maintaining homeostasis. Obesity is an independent disease state that has been reported as a common risk factor for multiple metabolic and microvascular diseases including nonalcoholic fatty liver disease (NAFLD), retinopathy, critical limb ischemia, and impaired angiogenesis. Sterile inflammation driven by high-fat diet, increased formation of reactive oxygen species, alteration of intracellular calcium level and associated release of inflammatory mediators, are the main common underlying forces in the pathophysiology of NAFLD, ischemic retinopathy, stroke, and aging brain. This work aims to examine the contribution of the pro-oxidative and pro-inflammatory thioredoxin interacting protein (TXNIP) to the expression and activation of NLRP3-inflammasome resulting in initiation or exacerbation of sterile inflammation in these disease states. Finally, the potential for TXNIP as a therapeutic target and whether TXNIP expression can be modulated using natural antioxidants or repurposing other drugs will be discussed.
AuthorsIslam N Mohamed, Luling Li, Saifudeen Ismael, Tauheed Ishrat, Azza B El-Remessy
JournalWorld journal of diabetes (World J Diabetes) Vol. 12 Issue 12 Pg. 1979-1999 (Dec 15 2021) ISSN: 1948-9358 [Print] United States
PMID35047114 (Publication Type: Journal Article, Review)
Copyright©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: