HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

DNA-Protein Cross-Links Formed by Reacting Lysine with Apurinic/Apyrimidinic Sites in DNA and Human Cells: Quantitative Analysis by Liquid Chromatography-Tandem Mass Spectrometry Coupled with Stable Isotope Dilution.

Abstract
Accumulating evidence suggests that DNA lesion-induced DNA-protein cross-links (DPCs) interrupt normal DNA metabolic processes, such as transcription, replication, and repair, resulting in profound biological consequences, including the development of many human diseases, such as cancers. Although apurinic/apyrimidinic (AP) sites are among the most predominant DNA lesions and are in close proximity to the histone proteins that they wrap around in the nucleosome, knowledge of the chemical structure or biological consequences of their associated DPCs is limited in part due to a lack of sensitive and selective analytical methods. We developed liquid chromatography-tandem mass spectrometry coupled with a stable isotope dilution method for rigorous quantitation of DPCs formed by reacting a DNA AP site with a lysine residue. In combination with chemical derivatization with fluorenylmethoxycarbonyl chloride to form a hydrophobic conjugate, the developed LC-MS/MS method allows sensitive detection of AP site-Lys cross-links down to sub-1 adduct per 106 nt. After validation using a synthetic AP site-lysine-cross-linked peptide and an oligodeoxyribonucleotide, the method was used to determine the concentration of AP site-lysine cross-links in hot acid-treated DNA and in human cells exposed to methyl methanesulfonate.
AuthorsWan Chan, Long Jin
JournalAnalytical chemistry (Anal Chem) Vol. 94 Issue 2 Pg. 803-810 (01 18 2022) ISSN: 1520-6882 [Electronic] United States
PMID34971314 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Isotopes
  • Nucleosomes
  • DNA
  • Lysine
Topics
  • Chromatography, Liquid
  • DNA (chemistry)
  • Humans
  • Isotopes
  • Lysine
  • Nucleosomes
  • Tandem Mass Spectrometry (methods)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: