HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Hepatitis B Virus Small Envelope Protein Promotes Hepatocellular Carcinoma Angiogenesis via Endoplasmic Reticulum Stress Signaling To Upregulate the Expression of Vascular Endothelial Growth Factor A.

Abstract
Hepatocellular carcinoma (HCC) is a hypervascular tumor, and accumulating evidence has indicated that stimulation of angiogenesis by hepatitis B virus (HBV) may contribute to HCC malignancy. The small protein of hepatitis B virus surface antigen (HBsAg), SHBs, is the most abundant HBV protein and has a close clinical association with HCC; however, whether SHBs contributes to HCC angiogenesis remains unknown. This study reports that the forced expression of SHBs in HCC cells promoted xenograft tumor growth and increased the microvessel density (MVD) within the tumors. Consistently, HBsAg was also positively correlated with MVD counts in HCC patients' specimens. The conditioned media from the SHBs-transfected HCC cells increased the capillary tube formation and migration of human umbilical vein endothelial cells (HUVECs). Intriguingly, the overexpression of SHBs increased vascular endothelial growth factor A (VEGFA) expression at both the mRNA and protein levels. Higher VEGFA expression levels were also observed in xenograft tumors transplanted with SHBs-expressing HCC cells and in HBsAg-positive HCC tumor tissues than in their negative controls. As expected, in the culture supernatants, the secretion of VEGFA was also significantly enhanced from HCC cells expressing SHBs, which promoted HUVEC migration and vessel formation. Furthermore, all three unfolded protein response (UPR) sensors, inositol-requiring enzyme 1α (IRE1α), protein kinase RNA-like endoplasmic reticulum (ER) kinase (PERK), and activating transcription factor 6 (ATF6), associated with ER stress were found to be activated in SHBs-expressing cells and correlated with VEGFA protein expression and secretion. Taken together, these results suggest an important role of SHBs in HCC angiogenesis and may highlight a potential target for preventive and therapeutic intervention for HBV-related HCC and its malignant progression. IMPORTANCE Chronic hepatitis B virus infection is one of the important risk factors for the development and progression of hepatocellular carcinoma (HCC). HCC is characteristic of hypervascularization even at early phases of the disease due to the overexpression of angiogenic factors like vascular endothelial growth factor A (VEGFA). However, a detailed mechanism of HBV-induced angiogenesis remains to be established. In this study, we demonstrate for the first time that the most abundant HBV protein, i.e., small surface antigen (SHBs), can enhance the angiogenic capacity of HCC cells by the upregulation of VEGFA expression both in vitro and in vivo. Mechanistically, SHBs induced endoplasmic reticulum (ER) stress, which consequently activated unfolded protein response (UPR) signaling to increase VEGFA expression and secretion. This study suggests that SHBs plays an important proangiogenic role in HBV-associated HCC and may represent a potential target for antiangiogenic therapy in HCC.
AuthorsShu-Xiang Wu, Shuang-Shuang Ye, Yu-Xiang Hong, Yan Chen, Biao Wang, Xin-Jian Lin, Xu Lin
JournalJournal of virology (J Virol) Vol. 96 Issue 4 Pg. e0197521 (02 23 2022) ISSN: 1098-5514 [Electronic] United States
PMID34910612 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Hepatitis B Surface Antigens
  • Vascular Endothelial Growth Factor A
Topics
  • Animals
  • Carcinoma, Hepatocellular (metabolism, pathology, virology)
  • Cell Line, Tumor
  • Endoplasmic Reticulum Stress
  • Hepatitis B Surface Antigens (metabolism)
  • Hepatitis B virus (immunology, pathogenicity)
  • Hepatitis B, Chronic (metabolism, pathology, virology)
  • Human Umbilical Vein Endothelial Cells
  • Humans
  • Liver Neoplasms (metabolism, pathology, virology)
  • Mice
  • Neovascularization, Pathologic (metabolism, pathology, virology)
  • Signal Transduction
  • Unfolded Protein Response
  • Vascular Endothelial Growth Factor A (genetics, metabolism)
  • Xenograft Model Antitumor Assays

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: