HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Silencing XIST mitigated lipopolysaccharide (LPS)-induced inflammatory injury in human lung fibroblast WI-38 cells through modulating miR-30b-5p/CCL16 axis and TLR4/NF-κB signaling pathway.

AbstractBACKGROUND:
Emerging evidence shows that long noncoding RNA (lncRNA) has been a novel insight in various diseases, including pneumonia. Even though lncRNA X-inactive-specific transcript (XIST) is well studied, its role in pneumonia remains to be largely unrevealed.
METHODS:
Expression of XIST, miRNA-30b-5p (miR-30b-5p), and CC chemokine ligand 16 (CCL16) was detected using reverse transcriptase quantitative polymerase chain reaction and western blotting; their interaction was confirmed by dual-luciferase reporter assay. Apoptosis, inflammation, and toll-like receptor 4 (TLR4)/NF-κB signaling pathway were measured using methyl thiazolyl tetrazolium assay, flow cytometry, western blotting, and enzyme-linked immunosorbent assay.
RESULTS:
Lipopolysaccharide (LPS) stimulation decreased cell viability and B cell lymphoma (Bcl)-2 expression, and increased cell apoptosis rate and expression of Bcl-2-associated X protein (Bax), cleaved-caspase-3, interleukin (IL)-6, IL-1β, and tumor necrosis factor α (TNF-α) in WI-38 cells. Expression of XIST and CCL16 was upregulated in the serum of patients with pneumonia and LPS-induced WI-38 cells, respectively; silencing XIST and CCL16 could suppress LPS-induced apoptosis and inflammation in WI-38 cells, and this protection was abolished by miR-30b-5p downregulation. Moreover, XIST and CCL16 could physically bind to miR-30b-5p, and XIST regulated CCL16 expression via sponging miR-30b-5p. TLR4 and phosphorylated P65 (p-P65) and p-IκB-α were highly induced by LPS treatment, and this upregulation was diminished by blocking XIST, accompanied with CCL16 downregulation and miR-30b-5p upregulation.
CONCLUSIONS:
Silencing XIST could alleviate LPS-induced inflammatory injury in human lung fibroblast WI-38 cells through modulating miR-30b-5p/CCL16 axis and inhibiting TLR4/NF-κB signaling pathway.
AuthorsJiahui Xu, Honggui Li, Ying Lv, Chang Zhang, Yiting Chen, Dezhao Yu
JournalOpen life sciences (Open Life Sci) Vol. 16 Issue 1 Pg. 108-127 ( 2021) ISSN: 2391-5412 [Electronic] Poland
PMID33817304 (Publication Type: Journal Article)
Copyright© 2021 Jiahui Xu et al., published by De Gruyter.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: