HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

MicroRNA-101 modulates cisplatin chemoresistance in liver cancer cells via the DNA-PKcs signaling pathway.

Abstract
Due to the high incidence of liver cancer, chemoradiotherapy and prognosis of liver cancer are a primary focus of medical research. microRNAs (miRNAs/miRs) serve crucial roles in resistance to chemotherapy and radiotherapy. The aim of the present study was to investigate the effects of miR-101 on the chemotherapeutic efficacy of cisplatin (CDDP) in liver cancer. First, human liver cancer cells (HepG2) were transfected with a miR-101 mimic or miR-101 inhibitor to bidirectionally regulate the expression of miR-101. Cell proliferation, apoptosis, intracellular reactive oxygen species and comet assay results indicated that the upregulation of miR-101 sensitized HepG2 cells to CDDP, and downregulation of miR-101 reduced chemosensitivity. A xenograft mouse model further confirmed that miR-101 overexpression increased CDDP sensitivity in liver cancer. Luciferase reporter and western blotting assays demonstrated that transfection of the miR-101 mimic markedly reduced activity of the DNA-dependent protein kinase catalytic subunit/protein kinase B/mammalian target of rapamycin (DNA-PKcs/Akt/mTOR) pathway and increased expression of apoptotic protein caspase 3, which is induced by CDDP treatment. By contrast, miR-101 inhibitors partially reversed these changes. Moreover, the miR-101 mimic suppressed activity of the nuclear factor-κB (NF-κB) pathway, leading to increased susceptibility of HepG2 cells to chemotherapeutic agents. In conclusion, miR-101 overexpression augmented cytotoxicity and reduced chemoresistance to CDDP in HepG2 cells, and this was associated with negative regulation of DNA-PKcs/Akt/NF-κB signaling.
AuthorsZongtao Chai, Xiaolan Yin, Jin Chen, Jie Shi, Juxian Sun, Chang Liu, Feng Liu, Shuqun Cheng
JournalOncology letters (Oncol Lett) Vol. 18 Issue 4 Pg. 3655-3663 (Oct 2019) ISSN: 1792-1074 [Print] Greece
PMID31516578 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: