HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Development of a Novel AOP for Cyp2F2-Mediated Lung Cancer in Mice.

Abstract
Traditional methods for carcinogenicity testing rely heavily on the rodent bioassay as the standard for identification of tumorigenic risk. As such, identification of species-specific outcomes and/or metabolism are a frequent argument for regulatory exemption. One example is the association of tumor formation in the mouse lung after exposure to Cyp2F2 ligands. The adverse outcome pathway (AOP) framework offers a theoretical platform to address issues of species specificity that is consistent, transparent, and capable of integrating data from new approach methodologies as well as traditional data streams. A central premise of the AOP concept is that pathway progression from the molecular initiating event (MIE) implies a definable "response-response" (R-R) relationship between each key event (KE) that drives the pathway towards a specific adverse outcome (AO). This article describes an AOP for lung cancer in the mouse from an MIE of Cyp2F2-specific reactive metabolite formation, advancing through KE that include protein and/or nucleic acid adducts, diminished Club Cell 10 kDa (CC10) protein expression, hyperplasia of CC10 deficient Club cells, and culminating in the AO of mixed-cell tumor formation in the distal airways. This tumor formation is independent of route of exposure and our AOP construct is based on overlapping mechanistic events for naphthalene, styrene, ethyl benzene, isoniazid, and fluensulfone in the mouse. This AOP is intended to accelerate the explication of an apparent mouse-specific outcome and serve as a starting point for a quantitative analysis of mouse-human differences in susceptibility to the tumorigenic effects of Cyp2F2 ligands.
AuthorsThomas Hill, Rory B Conolly
JournalToxicological sciences : an official journal of the Society of Toxicology (Toxicol Sci) Vol. 172 Issue 1 Pg. 1-10 (Nov 01 2019) ISSN: 1096-0929 [Electronic] United States
PMID31407013 (Publication Type: Journal Article)
CopyrightPublished by Oxford University Press on behalf of the Society of Toxicology 2019. This work is written by US Government employees and is in the public domain in the US.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: