HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

The Disposal of Reactive Carbonyl Species through Carnosine Conjugation: What We Know Now.

Abstract
Reactive Carbonyl Species are electrophiles generated by the oxidative cleavage of lipids and sugars. Such compounds have been described as important molecules for cellular signaling, whilst their accumulation has been found to be cytotoxic as they may trigger aberrant modifications of proteins (a process often referred to as carbonylation). A correlation between carbonylation of proteins and human disease progression has been shown in ageing, diabetes, obesity, chronic renal failure, neurodegeneration and cardiovascular disease. However, the fate of reactive carbonyl species is still far from being understood, especially concerning the mechanisms responsible for their disposal as well as the importance of this in disease progression. In this context, some data have been published on phase I and phase II deactivation of reactive carbonyl species. In the case of phase II mechanisms, the route involving glutathione conjugation and subsequent disposal of the adducts has been extensively studied both in vitro and in vivo for some of the more representative compounds, e.g. 4-hydroxynonenal. There is also emerging evidence of an involvement of carnosine as an endogenous alternative to glutathione for phase II conjugation. However, the fate of carnosine conjugates is still poorly investigated and, unlike glutathione, there is little evidence of the formation of carnosine adducts in vivo. The acquisition of such data could be of importance for the development of new drugs, since carnosine and its derivatives have been proposed as potential therapeutic agents for the mitigation of carbonylation associated with disease progression. Herein, we wish to review our current knowledge of the binding of reactive carbonyl species with carnosine together with the disposal of carnosine conjugates, emphasizing those aspects still requiring investigation such as conjugation reversibility and enzyme assisted catalysis of the reactions.
AuthorsEttore Gilardoni, Giovanna Baron, Alessandra Altomare, Marina Carini, Giancarlo Aldini, Luca Regazzoni
JournalCurrent medicinal chemistry (Curr Med Chem) Vol. 27 Issue 11 Pg. 1726-1743 ( 2020) ISSN: 1875-533X [Electronic] United Arab Emirates
PMID31232232 (Publication Type: Journal Article, Review)
CopyrightCopyright© Bentham Science Publishers; For any queries, please email at [email protected].
Chemical References
  • Proteins
  • Carnosine
Topics
  • Aging
  • Carnosine (chemistry)
  • Humans
  • Obesity
  • Oxidation-Reduction
  • Proteins

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: