HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Nucleotide signaling in astrogliosis.

Abstract
Acute and chronic damage to the central nervous system (CNS) releases large quantities of ATP. Whereas the ATP concentration in the extracellular space is normally in the micromolar range, under these conditions it increases to millimolar levels. A number of ligand-gated cationic channels termed P2X receptors (7 mammalian subtypes), and G protein-coupled P2Y receptors (8 mammalian subtypes) are located at astrocytes, as confirmed by the measurement of the respective mRNA and protein. Activation of both the P2X7 and P2Y1,2 subtypes identified at astrocytes initiates astrogliosis isolating damaged brain areas from surrounding healthy cells and synthesizing neurotrophins and pleotrophins that participate in neuronal recovery. Astrocytes are considered as cells of high plasticity which may alter their properties in a culture medium. Therefore, recent work concentrates on investigating nucleotide effects at in situ (acute brain slices) and in vivo astrocytes. A wealth of data relates to the involvement of purinergic mechanisms in astrogliosis induced by acute CNS injury such as mechanical trauma and hypoxia/ischemia. The released ATP may act within minutes as an excitotoxic molecule; at a longer time-scale within days it causes neuroinflammation. These effects sum up as necrosis/apoptosis on the one hand and proliferation on the other. Although the role of nucleotides in chronic neurodegenerative illnesses is not quite clear, it appears that they aggravate the consequences of the primary disease. Epilepsy and neuropathic pain are also associated with the release of ATP and a pathologic glia-neuron interaction leading to astrogliosis and cell death. In view of these considerations, P2 receptor antagonists may open new therapeutic vistas in all forms of acute and chronic CNS damage.
AuthorsHeike Franke, Peter Illes
JournalNeuroscience letters (Neurosci Lett) Vol. 565 Pg. 14-22 (Apr 17 2014) ISSN: 1872-7972 [Electronic] Ireland
PMID24103370 (Publication Type: Journal Article, Review)
CopyrightCopyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Chemical References
  • Receptors, Purinergic P2X
  • Receptors, Purinergic P2Y
  • Adenosine Triphosphate
Topics
  • Adenosine Triphosphate (metabolism)
  • Animals
  • Astrocytes (metabolism, pathology)
  • Brain (metabolism, pathology)
  • Brain Injuries (metabolism, pathology)
  • Brain Ischemia (metabolism, pathology)
  • Gliosis (metabolism, pathology)
  • Humans
  • Receptors, Purinergic P2X (metabolism)
  • Receptors, Purinergic P2Y (metabolism)
  • Spinal Cord (metabolism, pathology)
  • Spinal Injuries (metabolism, pathology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: