HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Induction of reactive oxygen species renders mutant and wild-type K-ras pancreatic carcinoma cells susceptible to Ad.mda-7-induced apoptosis.

Abstract
Pancreatic cancer is exceptionally aggressive with no long-term effective therapy. Current interventional approaches, including surgery, radiation and/or chemotherapy, have done little to quell the mortality associated with this malignancy. Subtraction hybridization identified a cancer-specific apoptosis-inducing cytokine gene, melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24), with a broad range of selective antitumor activity in diverse cancers both in vitro and in vivo in nude mice and recently in patients with advanced carcinomas and melanomas. Unlike most neoplasms, pancreatic cancers display innate resistance to mda-7/IL-24-induced apoptosis, which correlates with a diminished capacity to convert mda-7/IL-24 mRNA into protein. We presently demonstrate that this translational block can be reversed by treatment with agents that elevate reactive oxygen species (ROS). Induction of apoptosis in vitro and suppression of tumorigenesis in vivo in nude mice are induced in pancreatic cancers, irrespective of the status of their K-ras gene, only when tumor cells simultaneously express mda-7/IL-24 and are treated with a ROS-inducer, such as arsenic trioxide (ARS), N-(4-hydroxyphenyl) retinamide (HPR) or dithiophene (NSC656240 (NSC)). In pancreatic cancer cells constitutively expressing mda-7/IL-24 mRNA, a single treatment with arsenic trioxide, HPR or NSC656240 induces apoptosis, which correlates with production of MDA-7/IL-24 protein. The specificity of this action is documented by the ability of ROS inhibitors, including N-acetyl-L-cysteine and Tiron, to block this killing effect. Of potential clinical significance, similar treatment of normal cells does not elicit significant changes in growth nor does it induce apoptosis. Analysis of signal transduction changes in pancreatic carcinoma cells infected with Ad.mda-7 in combination with a ROS-inducer indicate that cell death correlates with modulation of discrete cassettes of multiple signaling pathways in a pancreatic cancer cell-specific manner, supporting global signaling dysregulation as a potential mediator of apoptosis induction. These findings suggest a promising combinatorial approach for safely promoting cell death in pancreatic tumors that provides a rational framework for developing a selective and effective therapy for this invariably fatal cancer.
AuthorsIrina V Lebedeva, Zao-Zhong Su, Devanand Sarkar, Rahul V Gopalkrishnan, Samuel Waxman, Adly Yacoub, Paul Dent, Paul B Fisher
JournalOncogene (Oncogene) Vol. 24 Issue 4 Pg. 585-96 (Jan 20 2005) ISSN: 0950-9232 [Print] England
PMID15580305 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S., Research Support, U.S. Gov't, P.H.S.)
Chemical References
  • Arsenates
  • Interleukins
  • RNA, Messenger
  • Reactive Oxygen Species
  • interleukin-24
  • Oncogene Protein p21(ras)
  • arsenic acid
Topics
  • Animals
  • Apoptosis (drug effects)
  • Arsenates (pharmacology)
  • Cell Line, Tumor
  • Genes, Tumor Suppressor
  • Humans
  • Interleukins (genetics, metabolism)
  • Mice
  • Mice, Nude
  • Mutation (genetics)
  • Neoplasm Transplantation
  • Oncogene Protein p21(ras) (genetics, metabolism)
  • Pancreatic Neoplasms (genetics, metabolism, pathology)
  • RNA, Messenger (genetics)
  • Reactive Oxygen Species (metabolism)
  • Signal Transduction

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: