HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Neuroprotective effects of a novel poly(ADP-ribose) polymerase-1 inhibitor, 2-[3-[4-(4-chlorophenyl)-1-piperazinyl] propyl]-4(3H)-quinazolinone (FR255595), in an in vitro model of cell death and in mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease.

Abstract
The massive activation of poly(ADP-ribose) polymerase-1 (PARP-1) by DNA-damaging stimuli, such as exposure to reactive oxygen species (ROS), can lead to cell injury via severe, irreversible depletion of the NAD and ATP pool, and PARP-1 inhibitors have been expected to rescue neurons from degeneration in a number of disease models. We have recently identified 2-[3-[4-(4-chlorophenyl)-1-piperazinyl] propyl]-4(3H)-quinazolinone (FR255595) as a novel and potent PARP-1 inhibitor through structure-based drug design and high-throughput screening. This compound potently inhibited PARP activity with an IC(50) value of 11 nM and was orally active and highly brain penetrable. Here, we show that prevention of PARP activation by FR255595 protects against both ROS-induced cells injury in vitro and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal dopaminergic damage in an in vivo Parkinson's disease (PD) model. In cell death models in vitro, exposure of hydrogen peroxide induced cell death with PARP overactivation in PC12 cells and SH-SY5Y cells, and pre- and post-treatment with FR255595 (10(-9)-10(-5) M) significantly reduced PARP activation and cell death. In mouse MPTP model, MPTP (20 mg/kg i.p.) intoxication lead to PARP activation and cell damage in the nigrostriatal dopaminergic pathway, which was significantly ameliorated by oral administration of FR255595 (10-32 mg/kg), both in the substantia nigra and in the striatum via marked reduction of PARP activation, even with delayed treatment. These findings clearly indicate that the novel PARP-1 inhibitor FR255595 exerts neuroprotective effect through its potent PARP-1 inhibitory actions in PD model, suggesting that the drug could be an attractive candidate for several neurodegenerative disorders, including PD.
AuthorsAkinori Iwashita, Syunji Yamazaki, Kayoko Mihara, Kouji Hattori, Hirofumi Yamamoto, Junya Ishida, Nobuya Matsuoka, Seitaro Mutoh
JournalThe Journal of pharmacology and experimental therapeutics (J Pharmacol Exp Ther) Vol. 309 Issue 3 Pg. 1067-78 (Jun 2004) ISSN: 0022-3565 [Print] United States
PMID14985416 (Publication Type: Journal Article)
Chemical References
  • 2-(3-(4-(4-chlorophenyl)-1-piperazinyl) propyl)-4(3H)-quinazolinone
  • Piperazines
  • Poly(ADP-ribose) Polymerase Inhibitors
  • Quinazolines
  • Quinazolinones
  • Poly(ADP-ribose) Polymerases
  • Parp2 protein, mouse
Topics
  • Animals
  • Cell Death (drug effects)
  • Cells, Cultured
  • Disease Models, Animal
  • MPTP Poisoning (prevention & control)
  • Male
  • Mice
  • Mice, Inbred C57BL
  • PC12 Cells
  • Piperazines (pharmacokinetics, pharmacology, therapeutic use)
  • Poly(ADP-ribose) Polymerase Inhibitors
  • Poly(ADP-ribose) Polymerases
  • Quinazolines (pharmacokinetics, pharmacology, therapeutic use)
  • Quinazolinones
  • Rats

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: