HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Candida albicans cell walls contain the fluorescent cross-linking amino acid dityrosine.

Abstract
Several clinical and laboratory isolates of Candida albicans have a natural blue surface fluorescence when cultured and observed with sensitive optics. The localization and color of the fluorescence are similar to those of the natural fluorescence of sporulated Saccharomyces cerevisiae which is caused by the generation and surface deposition of the cross-linking amino acid dityrosine. In S. cerevisiae, dityrosine production results from the direct action of at least two genes and is responsible for resistance of the ascospores to lytic enzymes and physicochemical trauma. Among the criteria for the identification of dityrosine is pH sensitivity of the fluorescence intensity and a highly characteristic shift of the fluorescence excitation maximum with a change in pH. Video microscopy of whole Candida organisms revealed the characteristic dityrosine intensity maximum at pH approximately 10 and the intensity minimum at pH approximately 2. Separation of an acid hydrolysate of Candida cell walls by reverse-phase high-performance liquid chromatography revealed a fluorescence peak that coelutes with the reagent dityrosine. At pH approximately 10, this peak has a fluorescence excitation maximum of 320 to 325 nm, while at pH approximately 2, the excitation maximum is 285 to 290 nm. This excitation maximum shift and the observed emission maximum of approximately 410 nm are characteristic of dityrosine. Two separate strains of C. albicans were injected intraperitoneally into mice and harvested at 24 h. Blue surface fluorescence was observed, suggesting that dityrosine generation occurs in vivo as well as in vitro. This is the first report of the presence of dityrosine in a human fungal pathogen.
AuthorsE H Smail, P Briza, A Panagos, L Berenfeld
JournalInfection and immunity (Infect Immun) Vol. 63 Issue 10 Pg. 4078-83 (Oct 1995) ISSN: 0019-9567 [Print] United States
PMID7558322 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, P.H.S.)
Chemical References
  • Tyrosine
  • dityrosine
Topics
  • Animals
  • Candida albicans (chemistry)
  • Cell Wall (chemistry)
  • Chromatography, High Pressure Liquid
  • Fluorescence
  • Hydrogen-Ion Concentration
  • Male
  • Mice
  • Mice, Inbred ICR
  • Tyrosine (analogs & derivatives, analysis)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: