HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

HDAC Inhibition as Potential Therapeutic Strategy to Restore the Deregulated Immune Response in Severe COVID-19.

Abstract
The COVID-19 pandemic has had a devastating impact worldwide and has been a great challenge for the scientific community. Vaccines against SARS-CoV-2 are now efficiently lessening COVID-19 mortality, although finding a cure for this infection is still a priority. An unbalanced immune response and the uncontrolled release of proinflammatory cytokines are features of COVID-19 pathophysiology and contribute to disease progression and worsening. Histone deacetylases (HDACs) have gained interest in immunology, as they regulate the innate and adaptative immune response at different levels. Inhibitors of these enzymes have already proven therapeutic potential in cancer and are currently being investigated for the treatment of autoimmune diseases. We thus tested the effects of different HDAC inhibitors, with a focus on a selective HDAC6 inhibitor, on immune and epithelial cells in in vitro models that mimic cells activation after viral infection. Our data indicate that HDAC inhibitors reduce cytokines release by airway epithelial cells, monocytes and macrophages. This anti-inflammatory effect occurs together with the reduction of monocytes activation and T cell exhaustion and with an increase of T cell differentiation towards a T central memory phenotype. Moreover, HDAC inhibitors hinder IFN-I expression and downstream effects in both airway epithelial cells and immune cells, thus potentially counteracting the negative effects promoted in critical COVID-19 patients by the late or persistent IFN-I pathway activation. All these data suggest that an epigenetic therapeutic approach based on HDAC inhibitors represents a promising pharmacological treatment for severe COVID-19 patients.
AuthorsChiara Ripamonti, Valeria Spadotto, Pietro Pozzi, Andrea Stevenazzi, Barbara Vergani, Mattia Marchini, Giovanni Sandrone, Emanuele Bonetti, Luca Mazzarella, Saverio Minucci, Christian Steinkühler, Gianluca Fossati
JournalFrontiers in immunology (Front Immunol) Vol. 13 Pg. 841716 ( 2022) ISSN: 1664-3224 [Electronic] Switzerland
PMID35592335 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2022 Ripamonti, Spadotto, Pozzi, Stevenazzi, Vergani, Marchini, Sandrone, Bonetti, Mazzarella, Minucci, Steinkühler and Fossati.
Chemical References
  • COVID-19 Vaccines
  • Cytokines
  • Histone Deacetylase Inhibitors
  • Histone Deacetylases
Topics
  • COVID-19 Vaccines
  • Cytokines (metabolism)
  • Histone Deacetylase Inhibitors (pharmacology, therapeutic use)
  • Histone Deacetylases (metabolism)
  • Humans
  • Immunity
  • Pandemics
  • SARS-CoV-2
  • COVID-19 Drug Treatment

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: