HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

A Probe into the Intervention Mechanism of Yiqi Huayu Jiedu Decoction on TLR4/NLRP3 Signal Pathway in Lipopolysaccharide-Induced Acute Respiratory Distress Syndrome (ARDS) Rats.

AbstractBACKGROUND:
This study discusses the anti-inflammatory mechanism of Yiqi Huayu Jiedu decoction (YQHYJD) and studies the intervening effect of YQHYJD on the inflammatory cytokines in acute respiratory distress syndrome (ARDS) rats by inhibiting the TLR4/NLRP3 signal pathway. The aim of the probe is to provide evidence to support the identification of therapeutic targets in Chinese medicine treatment, which broadens the alternatives for the treatment of ARDS.
METHOD:
A lipopolysaccharide (LPS)-induced ARDS model group is established on rats by tail vein injection. A medicine group is established on ARDS rats by prophylactic administration using YQHYJD. Materials are collected, and tests are conducted according to experimental processes.
RESULT:
The rats in the medicine group gained weight compared with those in the ARDS model group. Pathological sections from the medicine group indicated improved condition in terms of pulmonary and interstitial edema in the lung tissues of rats compared with that from the ARDS model group. The percentage of neutrophil of the medicine group was significantly brought down compared with that of the ARDS model group (P < 0.001). Enzyme-linked immunosorbent assay (ELISA) was used to detect the changes in the level of inflammatory cytokines. It was observed that the levels of IL-1β and IL-18 in serum of the medicine group significantly decreased (P < 0.001 and P < 0.01), the contents of TLR4 and NLRP3 in bronchoalveolar lavage fluid (BALF) of the medicine group decreased, and the contents of TLR4 and NLRP3 in lung tissue homogenate of the medicine group significantly decreased (P < 0.05, P < 0.001, P < 0.01, and P < 0.05). In further mass spectrum identification of the proteins from the same animal groups, it was observed that the expressions of inflammatory proteins TNFRSF1, LBP, and NOS2 of the medicine group were reduced. The differences were statistically significant.
CONCLUSIONS:
The pharmacological action of YQHYJD's anti-inflammatory mechanism is closely associated with the regulation of inflammatory cytokines TLR4, NLRP3, IL-1β, IL-18, TNFRSF1, LBP, and NOS2 on the TLR4/NLRP3 signal pathway.
AuthorsYuanhong Ma, Yifan Chen, Yan Li, Yan Liu, Yurong Kong, Qiao Zou, Zhengguang Guo, Xin Li, Yan Chu, Qian Wang
JournalEvidence-based complementary and alternative medicine : eCAM (Evid Based Complement Alternat Med) Vol. 2022 Pg. 3051797 ( 2022) ISSN: 1741-427X [Print] United States
PMID35222667 (Publication Type: Journal Article)
CopyrightCopyright © 2022 Yuanhong Ma et al.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: