HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Curcumin-primed human BMSC-derived extracellular vesicles reverse IL-1β-induced catabolic responses of OA chondrocytes by upregulating miR-126-3p.

AbstractBACKGROUND:
Curcumin has anti-inflammatory effects and qualifies as a potential candidate for the treatment of osteoarthritis (OA). However, curcumin has limited bioavailability. Extracellular vesicles (EVs) are released by multiple cell types and act as molecule carrier during intercellular communication. We assume that EVs can maintain bioavailability and stability of curcumin after encapsulation. Here, we evaluated modulatory effects of curcumin-primed human (h)BMSC-derived EVs (Cur-EVs) on IL-1β stimulated human osteoarthritic chondrocytes (OA-CH).
METHODS:
CellTiter-Blue Viability- (CTB), Caspase 3/7-, and live/dead assays were used to determine range of cytotoxic curcumin concentrations for hBMSC and OA-CH. Cur-EVs and control EVs were harvested from cell culture supernatants of hBMSC by ultracentrifugation. Western blotting (WB), transmission electron microscopy, and nanoparticle tracking analysis were performed to characterize the EVs. The intracellular incorporation of EVs derived from PHK26 labeled and curcumin-primed or control hBMSC was tested by adding the labeled EVs to OA-CH cultures. OA-CH were pre-stimulated with IL-1β, followed by Cur-EV and control EV treatment for 24 h and subsequent analysis of viability, apoptosis, and migration (scratch assay). Relative expression of selected anabolic and catabolic genes was assessed with qRT-PCR. Furthermore, WB was performed to evaluate phosphorylation of Erk1/2, PI3K/Akt, and p38MAPK in OA-CH. The effect of hsa-miR-126-3p expression on IL-1β-induced OA-CH was determined using CTB-, Caspase 3/7-, live/dead assays, and WB.
RESULTS:
Cur-EVs promoted viability and reduced apoptosis of IL-1β-stimulated OA-CH and attenuated IL-1β-induced inhibition of migration. Furthermore, Cur-EVs increased gene expression of BCL2, ACAN, SOX9, and COL2A1 and decreased gene expression of IL1B, IL6, MMP13, and COL10A1 in IL-1β-stimulated OA-CH. In addition, phosphorylation of Erk1/2, PI3K/Akt, and p38 MAPK, induced by IL-1β, is prevented by Cur-EVs. Cur-EVs increased IL-1β-reduced expression of hsa-miR-126-3p and hsa-miR-126-3p mimic reversed the effects of IL-1β.
CONCLUSION:
Cur-EVs alleviated IL-1β-induced catabolic effects on OA-CH by promoting viability and migration, reducing apoptosis and phosphorylation of Erk1/2, PI3K/Akt, and p38 MAPK thereby modulating pro-inflammatory signaling pathways. Treatment of OA-CH with Cur-EVs is followed by upregulation of expression of hsa-miR-126-3p which is involved in modulation of anabolic response of OA-CH. EVs may be considered as promising drug delivery vehicles of curcumin helping to alleviate OA.
AuthorsShushan Li, Sabine Stöckl, Christoph Lukas, Marietta Herrmann, Christoph Brochhausen, Matthias A König, Brian Johnstone, Susanne Grässel
JournalStem cell research & therapy (Stem Cell Res Ther) Vol. 12 Issue 1 Pg. 252 (04 29 2021) ISSN: 1757-6512 [Electronic] England
PMID33926561 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Interleukin-1beta
  • MIRN126 microRNA, human
  • MicroRNAs
  • Curcumin
Topics
  • Chondrocytes
  • Curcumin (pharmacology)
  • Extracellular Vesicles
  • Humans
  • Interleukin-1beta (genetics)
  • MicroRNAs (genetics)
  • Osteoarthritis (genetics)
  • Phosphatidylinositol 3-Kinases

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: