HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Propofol suppresses non-small cell lung cancer tumorigenesis by regulation of circ-RHOT1/miR-326/FOXM1 axis.

AbstractBACKGROUND:
Lung cancer is a common malignant tumor around the world. Propofol has been found to play an anti-tumor role. Therefore, the purpose of this study is to clarify the role and underlying molecular mechanisms of Propofol in non-small cell lung cancer (NSCLC).
METHODS:
The real-time quantitative polymerase chain reaction (RT-qPCR) assay was conducted to measure the expression levels of circular_RHOT1 (circ-RHOT1), microRNA (miR)-326, and Forkhead Box M1 (FOXM1) in tissues and cells. The proliferation of cell was determined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazol-3-ium bromide (MTT) and colony forming assays. The flow cytometry assay was used to evaluate cell apoptosis. The migration and invasion of NSCLC cells were determined by transwell assay. The protein expression level of FOXM1 was quantified by western blot assay. The association between miR-326 and circ-RHOT1 or FOXM1 was confirmed by dual-luciferase reporter assay.
RESULTS:
Circ-RHOT1 was increased in NSCLC tissues and cells. Importantly, treatment with Propofol inhibited circ-RHOT1 expression in NSCLC cells. Propofol dose-dependently inhibited proliferation, migration and invasion while induced apoptosis of NSCLC cells, which was abolished by circ-RHOT1 overexpression, FOXM1 overexpression, or miR-326 silencing. MiR-326, interacted with FOXM1, was a target of circ-RHOT1 in NSCLC cells, which was confirmed by dual-luciferase reporter assay. Circ-RHOT1 regulated FOXM1 expression by sponging miR-326 in NSCLC cells. In addition, inhibition of circ-RHOT1 in combined with Propofol impeded tumorigenesis in vivo.
CONCLUSION:
Propofol repressed proliferation, migration and invasion while induced apoptosis of NSCLC cells at least in part by regulation of circ-RHOT1/miR-326/FOXM1 axis in NSCLC cells.
AuthorsQian Zhang, Fang Cheng, Zhaojian Zhang, Bing Wang, Xiaobao Zhang
JournalLife sciences (Life Sci) Pg. 119042 (Jan 27 2021) ISSN: 1879-0631 [Electronic] Netherlands
PMID33515563 (Publication Type: Journal Article)
CopyrightCopyright © 2018. Published by Elsevier Inc.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: