HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Carboxymethyl chitosan reduces inflammation and promotes osteogenesis in a rabbit knee replacement model.

AbstractBACKGROUND:
The major causes of failure after total knee arthroplasty (TKA) include prosthesis loosening and infection. This study aimed to investigate the role of carboxymethyl chitosan (CMC) in knee arthroplasty.
METHODS:
A total of 20 New Zealand white rabbits that were divided into two groups (10 in the control group and 10 in the chitosan group) were included in the study. They underwent TKA surgery, and all were implanted with titanium rod prostheses; the prosthesis in the chitosan group was coated with CMC. After 12 weeks, all rabbits were euthanized, and the following analyses of some specific surface membrane tissues around the prosthesis were performed: X-ray analysis; micro-computed tomography scan; haematoxylin and eosin, Van Gieson, and Von Kossa staining; reverse transcription polymerase chain reaction; and Western Blotting.
RESULTS:
The result of CCK8 test showed CMC can promote cell proliferation and increase cell viability. Radiological result showed better amount of bone deposits and more bone formation in the chitosan group. HE staining result showed CMC reduces inflammation around the prosthesis. The VG and Von Kossa staining results showed CMC can promote bone deposition around prosthesis. And according to the results of PCR and WB, the OCN content was higher in the chitosan group, while the MMPs content was lower. The chitosan group has an increased OPG/RANKL ratio than the control group.
CONCLUSION:
CMC can effectively inhibit the inflammatory response around the prosthesis and osteoclast activation and promote osteogenesis by interfering with the osteoprotegerin/receptor activator of nuclear factor kappa-Β ligand/receptor activator of nuclear factor kappa-Β signalling pathway.
AuthorsFeng Liu, Hai-Yan Li, Zhen Wang, Hai-Ning Zhang, Ying-Zhen Wang, Hao Xu
JournalBMC musculoskeletal disorders (BMC Musculoskelet Disord) Vol. 21 Issue 1 Pg. 775 (Nov 24 2020) ISSN: 1471-2474 [Electronic] England
PMID33234136 (Publication Type: Journal Article)
Chemical References
  • Osteoprotegerin
  • RANK Ligand
  • Chitosan
Topics
  • Animals
  • Arthroplasty, Replacement, Knee (adverse effects)
  • Chitosan
  • Inflammation (drug therapy)
  • Osteogenesis
  • Osteoprotegerin
  • RANK Ligand
  • Rabbits
  • X-Ray Microtomography

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: