HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

DEPTOR is an in vivo tumor suppressor that inhibits prostate tumorigenesis via the inactivation of mTORC1/2 signals.

Abstract
The DEPTOR-mTORC1/2 axis has been shown to play an important, but a context dependent role in the regulation of proliferation and the survival of various cancer cells in cell culture settings. The in vivo role of DEPTOR in tumorigenesis remains elusive. Here we showed that the levels of both DEPTOR protein and mRNA were substantially decreased in human prostate cancer tissues, which positively correlated with disease progression. DEPTOR depletion accelerated proliferation and survival, migration, and invasion in human prostate cancer cells. Mechanistically, DEPTOR depletion not only activated both mTORC1 and mTORC2 signals to promote cell proliferation and survival, but also induced an AKT-dependent epithelial-mesenchymal transition (EMT) and β-catenin nuclear translocation to promote cell migration and invasion. Abrogation of mTOR or AKT activation rescued the biological consequences of DEPTOR depletion. Importantly, in a Deptor-KO mouse model, Deptor knockout accelerated prostate tumorigenesis triggered by Pten loss via the activation of mTOR signaling. Collectively, our study demonstrates that DEPTOR is a tumor suppressor in the prostate, and its depletion promotes tumorigenesis via the activation of mTORC1 and mTORC2 signals. Thus, DEPTOR reactivation via a variety of means would have therapeutic potential for the treatment of prostate cancer.
AuthorsXiaoyu Chen, Xiufang Xiong, Danrui Cui, Fei Yang, Dongping Wei, Haomin Li, Jianfeng Shu, Yanli Bi, Xiaoqing Dai, Longyuan Gong, Yi Sun, Yongchao Zhao
JournalOncogene (Oncogene) Vol. 39 Issue 7 Pg. 1557-1571 (02 2020) ISSN: 1476-5594 [Electronic] England
PMID31685947 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Intracellular Signaling Peptides and Proteins
  • Membrane Proteins
  • DEPTOR protein, human
  • Mechanistic Target of Rapamycin Complex 1
  • Mechanistic Target of Rapamycin Complex 2
  • TPTE protein, human
  • PTEN Phosphohydrolase
Topics
  • Animals
  • Carcinogenesis
  • Cell Movement
  • Cell Proliferation
  • Cell Survival
  • Gene Knockdown Techniques
  • Heterozygote
  • Humans
  • Intracellular Signaling Peptides and Proteins (deficiency, genetics, metabolism)
  • Male
  • Mechanistic Target of Rapamycin Complex 1 (metabolism)
  • Mechanistic Target of Rapamycin Complex 2 (metabolism)
  • Membrane Proteins (deficiency, genetics)
  • Mice
  • Neoplasm Invasiveness
  • PTEN Phosphohydrolase (deficiency, genetics)
  • Prostatic Neoplasms (metabolism, pathology)
  • Signal Transduction

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: