HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

LEAP2 changes with body mass and food intake in humans and mice.

Abstract
Acyl-ghrelin administration increases food intake, body weight, and blood glucose. In contrast, mice lacking ghrelin or ghrelin receptors (GHSRs) exhibit life-threatening hypoglycemia during starvation-like conditions, but do not consistently exhibit overt metabolic phenotypes when given ad libitum food access. These results, and findings of ghrelin resistance in obese states, imply nutritional state dependence of ghrelin's metabolic actions. Here, we hypothesized that liver-enriched antimicrobial peptide-2 (LEAP2), a recently characterized endogenous GHSR antagonist, blunts ghrelin action during obese states and postprandially. To test this hypothesis, we determined changes in plasma LEAP2 and acyl-ghrelin due to fasting, eating, obesity, Roux-en-Y gastric bypass (RYGB), vertical sleeve gastrectomy (VSG), oral glucose administration, and type 1 diabetes mellitus (T1DM) using humans and/or mice. Our results suggest that plasma LEAP2 is regulated by metabolic status: its levels increased with body mass and blood glucose and decreased with fasting, RYGB, and in postprandial states following VSG. These changes were mostly opposite of those of acyl-ghrelin. Furthermore, using electrophysiology, we showed that LEAP2 both hyperpolarizes and prevents acyl-ghrelin from activating arcuate NPY neurons. We predict that the plasma LEAP2/acyl-ghrelin molar ratio may be a key determinant modulating acyl-ghrelin activity in response to body mass, feeding status, and blood glucose.
AuthorsBharath K Mani, Nancy Puzziferri, Zhenyan He, Juan A Rodriguez, Sherri Osborne-Lawrence, Nathan P Metzger, Navpreet Chhina, Bruce Gaylinn, Michael O Thorner, E Louise Thomas, Jimmy D Bell, Kevin W Williams, Anthony P Goldstone, Jeffrey M Zigman
JournalThe Journal of clinical investigation (J Clin Invest) Vol. 129 Issue 9 Pg. 3909-3923 (09 03 2019) ISSN: 1558-8238 [Electronic] United States
PMID31424424 (Publication Type: Clinical Trial, Journal Article, Multicenter Study, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Chemical References
  • Antimicrobial Cationic Peptides
  • Blood Glucose
  • Blood Proteins
  • Ghrelin
  • Leap2 protein, mouse
  • liver-expressed antimicrobial peptide 2, human
Topics
  • Adult
  • Animals
  • Antimicrobial Cationic Peptides (blood)
  • Blood Glucose (metabolism)
  • Blood Proteins
  • Body Mass Index
  • Eating
  • Female
  • Gastric Bypass
  • Ghrelin (blood)
  • Humans
  • Male
  • Mice
  • Obesity (blood, pathology, surgery)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: