HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Deletion of Lymphangiogenic and Angiogenic Growth Factor VEGF-D Leads to Severe Hyperlipidemia and Delayed Clearance of Chylomicron Remnants.

Abstract
Objective- Dyslipidemia is one of the key factors behind coronary heart disease. Blood and lymphatic vessels play pivotal roles in both lipoprotein metabolism and development of atherosclerotic plaques. Recent studies have linked members of VEGF (vascular endothelial growth factor) family to lipid metabolism, but the function of VEGF-D has remained unexplored. Here, we investigated how the deletion of VEGF-D affects lipid and lipoprotein metabolism in atherogenic LDLR-/- ApoB100/100 mice. Approach and Results- Deletion of VEGF-D (VEGF-D-/-LDLR-/-ApoB100/100) led to markedly elevated plasma cholesterol and triglyceride levels without an increase in atherogenesis. Size distribution and hepatic lipid uptake studies confirmed a delayed clearance of large chylomicron remnant particles that cannot easily penetrate through the vascular endothelium. Mechanistically, the inhibition of VEGF-D signaling significantly decreased the hepatic expression of SDC1 (syndecan 1), which is one of the main receptors for chylomicron remnant uptake when LDLR is absent. Immunohistochemical staining confirmed reduced expression of SDC1 in the sinusoidal surface of hepatocytes in VEGF-D deficient mice. Furthermore, hepatic RNA-sequencing revealed that VEGF-D is also an important regulator of genes related to lipid metabolism and inflammation. The lack of VEGF-D signaling via VEGFR3 (VEGF receptor 3) led to lowered expression of genes regulating triglyceride and cholesterol production, as well as downregulation of peroxisomal β-oxidation pathway. Conclusions- These results demonstrate that VEGF-D, a powerful lymphangiogenic and angiogenic growth factor, is also a major regulator of chylomicron metabolism in mice.
AuthorsAnnakaisa Tirronen, Taina Vuorio, Sanna Kettunen, Krista Hokkanen, Bastian Ramms, Henri Niskanen, Hanne Laakso, Minna U Kaikkonen, Matti Jauhiainen, Philip L S M Gordts, Seppo Ylä-Herttuala
JournalArteriosclerosis, thrombosis, and vascular biology (Arterioscler Thromb Vasc Biol) Vol. 38 Issue 10 Pg. 2327-2337 (10 2018) ISSN: 1524-4636 [Electronic] United States
PMID30354205 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Apob protein, mouse
  • Apolipoprotein B-100
  • Apolipoproteins B
  • Chylomicron Remnants
  • Receptors, LDL
  • Sdc1 protein, mouse
  • Syndecan-1
  • Triglycerides
  • Vascular Endothelial Growth Factor D
  • Vegfd protein, mouse
  • Cholesterol
  • Vascular Endothelial Growth Factor Receptor-3
Topics
  • Animals
  • Apolipoprotein B-100
  • Apolipoproteins B (deficiency, genetics)
  • Atherosclerosis (blood, genetics, metabolism)
  • Cholesterol (blood)
  • Chylomicron Remnants (blood, metabolism)
  • Disease Models, Animal
  • Gene Expression Regulation
  • Hyperlipidemias (blood, genetics, metabolism)
  • Intestinal Absorption
  • Liver (metabolism)
  • Male
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Receptors, LDL (deficiency, genetics)
  • Severity of Illness Index
  • Syndecan-1 (metabolism)
  • Triglycerides (blood)
  • Vascular Endothelial Growth Factor D (genetics, metabolism)
  • Vascular Endothelial Growth Factor Receptor-3 (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: