HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Inhibition of dynamin-related protein 1 has neuroprotective effect comparable with therapeutic hypothermia in a rat model of cardiac arrest.

Abstract
Dynamin-related protein 1 (Drp1) regulates mitochondrial fission, it has been proven that inhibition of Drp1 by mdivi-1 improves survival and attenuates cerebral ischemic injury after cardiac arrest. In this study, we compared the effects of Drp1 inhibition with therapeutic hypothermia on post-resuscitation neurologic injury in a rat model of cardiac arrest. Rats were randomized into 4 groups: mdivi-1 treatment group (n = 39), hypothermic group (n = 38), normothermic group (n = 41), and sham group (n = 12). The rats in the mdivi-1 treatment group were received intravenously 1.2 mg/kg of mdivi-1 at 1 minute after the return of spontaneous circulation (ROSC). In rats in hypothermia group, rapid cooling was initiated at 5 minutes after resuscitation, and the core temperature was maintained to 33 ± 0.5°C for 2 hours. The results showed that both Drp1 inhibition and therapeutic hypothermia increased 3-day survival time (all P <0.05) and improved neurologic function up to 72 hours post cardiac arrest. In addition, both Drp1 inhibition and therapeutic hypothermia decreased cell injury, apoptosis in hippocampal cornu ammonis 1 region and brain mitochondrial dysfunction including adenosine triphosphate production, reactive oxygen species and mitochondrial membrane potential after cardiac arrest. Moreover, therapeutic hypothermia decreased mitochondrial Drp1 expression and mitochondrial fission after cardiac arrest. In conclusion, inhibition of Drp1 has a similar effect to therapeutic hypothermia on neurologic outcome after resuscitation in this cardiac arrest rat model, and the neuroprotective effects of therapeutic hypothermia are associated with inhibition of mitochondrial fission.
AuthorsPeng Wang, Yi Li, Zhengfei Yang, Tao Yu, Guanghui Zheng, Xiangshao Fang, Zitong Huang, Longyuan Jiang, Wanchun Tang
JournalTranslational research : the journal of laboratory and clinical medicine (Transl Res) Vol. 194 Pg. 68-78 (04 2018) ISSN: 1878-1810 [Electronic] United States
PMID29351829 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2018 Elsevier Inc. All rights reserved.
Chemical References
  • 3-(2,4-dichloro-5-methoxyphenyl)-2-sulfanyl-4(3H)-quinazolinone
  • Neuroprotective Agents
  • Quinazolinones
  • Reactive Oxygen Species
  • Dnm1l protein, rat
  • Dynamins
Topics
  • Animals
  • Disease Models, Animal
  • Dynamins (antagonists & inhibitors)
  • Heart Arrest (therapy)
  • Hypothermia, Induced
  • Male
  • Mitochondrial Dynamics (drug effects)
  • Neuroprotective Agents (pharmacology)
  • Quinazolinones (pharmacology)
  • Rats
  • Rats, Sprague-Dawley
  • Reactive Oxygen Species (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: