HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

An easy-to-use FRET protein substrate to detect calpain cleavage in vitro and in vivo.

Abstract
Calpain-1 and -2 are Ca2+-activated intracellular cysteine proteases that regulate a wide range of cellular functions through the cleavage of their protein substrates. Unlike degradative proteases, calpains make limited, transformative cleavages, typically in accessible sequences linking discrete subdomains, to irreversibly alter substrate functions. The biological roles of calpain and their interplay with calcium signaling are of significant biomedical interest as biomarkers and potential therapeutic targets in a growing number of diseases including Alzheimer's, cancer and fibrosis. Unfortunately, many of the colorimetric and fluorimetric assays that have been developed to study calpain activity suffer from low sensitivity and/or poor calpain specificity. To address the need for a highly sensitive and calpain-specific substrate suitable for in vitro and in vivo calpain activity analysis, we have developed a protein FRET probe. We inserted the optimized calpain cleavage sequence PLFAAR between cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) and modulated its flanking sequences for optimal calpain cleavage. We demonstrate greater sensitivity and calpain-specificity of an optimal 16-residue PLFAAR-based FRET substrate compared to a standard α-spectrin-based probe. The 16-residue PLFAAR protein FRET substrate is not significantly cleaved by trypsin, chymotrypsin, cathepsin-L or caspase-3, and is highly sensitive to both calpain-1 and -2. After transfection of the substrate gene into breast cancer cells the PLFAAR protein FRET product was cut in lysed wild-type cells but not in those with a calpain knock-out phenotype. Blockage of substrate cleavage in the lysates by endogenous and exogenous calpastatin was observed, and was overcome by adding extra calpain.
AuthorsChristian-Scott E McCartney, James A MacLeod, Peter A Greer, Peter L Davies
JournalBiochimica et biophysica acta. Molecular cell research (Biochim Biophys Acta Mol Cell Res) Vol. 1865 Issue 2 Pg. 221-230 (Feb 2018) ISSN: 0167-4889 [Print] Netherlands
PMID29104086 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2017 Elsevier B.V. All rights reserved.
Chemical References
  • Calpain
  • CAPN1 protein, human
  • CAPN2 protein, human
Topics
  • Calpain (chemistry, genetics, metabolism)
  • Cell Line, Tumor
  • Fluorescence Resonance Energy Transfer
  • Humans
  • Proteolysis

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: