HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Early-onset ataxia with ocular motor apraxia and hypoalbuminemia/ataxia with oculomotor apraxia 1.

Abstract
DNA single-strand breaks (SSBs) are non-overlapping discontinuities in strands ofa DNA duplex. Significant attention has been given on the DNA SSB repair (SSBR) system in neurons, because the impairment of the SSBR causes human neurodegenerative disorders, including early-onset ataxia with ocular motor apraxia and hypoalbuminemia (EAOH), also known as ataxia-oculomotor apraxia Type 1 (AOA1). EAOH/AOA1 is characterized by early-onset slowly progressive ataxia, ocular motor apraxia, peripheral neuropathy and hypoalbuminemia. Neuropathological examination reveals severe loss of Purkinje cells and moderate neuronal loss in the anterior horn and dorsal root ganglia. EAOH/AOA1 is caused by the mutation in the APTX gene encoding the aprataxin (APTX) protein. APTX interacts with X-ray repair cross-complementing group 1 protein, which is a scaffold protein in SSBR. In addition, APTX-defective cells show increased sensitivity to genotoxic agents, which result in SSBs. These results indicate an important role ofAPTX in SSBR. SSBs are usually accompanied by modified or damaged 5'- and 3'-ends at the break site. Because these modified or damaged ends are not suitable for DNA ligation, they need to be restored to conventional ends prior to subsequent repair processes. APTX restores the 5'-adenylate monophosphate, 3'-phosphates and 3'-phosphoglycolate ends. The loss of function of APTX results in the accumulation of SSBs, consequently leading to neuronal cell dysfunction and death.
AuthorsMasayoshi Tada, Akio Yokoseki, Tatsuya Sato, Takao Makifuchi, Osamu Onodera
JournalAdvances in experimental medicine and biology (Adv Exp Med Biol) Vol. 685 Pg. 21-33 ( 2010) ISSN: 0065-2598 [Print] United States
PMID20687492 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Review)
Chemical References
  • APTX protein, human
  • DNA-Binding Proteins
  • Mutagens
  • Nuclear Proteins
  • X-ray Repair Cross Complementing Protein 1
Topics
  • Apraxias (genetics, metabolism, pathology)
  • Cell Death (drug effects, genetics)
  • DNA Breaks, Single-Stranded
  • DNA Repair
  • DNA-Binding Proteins (genetics, metabolism)
  • Humans
  • Hypoalbuminemia (genetics, metabolism, pathology)
  • Mutagens (pharmacology)
  • Mutation
  • Nuclear Proteins (genetics, metabolism)
  • Purkinje Cells
  • Spinocerebellar Degenerations (genetics, metabolism, pathology)
  • X-ray Repair Cross Complementing Protein 1

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: