HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Modulation of gene expression in precancerous rat esophagus by dietary zinc deficit and replenishment.

Abstract
Zinc deficiency in rats enhances esophageal cell proliferation, causes alteration in gene expression, and promotes esophageal carcinogenesis. Zinc replenishment rapidly induces apoptosis in the esophageal epithelium thereby reversing cell proliferation and carcinogenesis. To identify zinc-responsive genes responsible for these divergent effects, we did oligonucleotide array-based gene expression profiling analyses in the precancerous zinc-deficient esophagus and in zinc-replenished esophagi after treatment with intragastric zinc compared with zinc-sufficient esophagi. Thirty-three genes (21 up-regulated and 12 down-regulated) showed a > or = 2-fold change in expression in the hyperplastic zinc-deficient versus zinc-sufficient esophageal epithelia. Expression of genes involved in cell division, survival, adhesion, and tumorigenesis were markedly changed. The zinc-sensitive gene metallothionein-1 (MT-1 was up-regulated 7-fold, the opposite of results for small intestine and liver under zinc-deficient conditions. Keratin 14 (KRT14, a biomarker in esophageal tumorigenesis), carbonic anhydrase II (CAII, a regulator of acid-base homeostasis), and cyclin B were up-regulated >4-fold. Immunohistochemistry showed that metallothionein and keratin 14 proteins were overexpressed in zinc-deficient esophagus, as well as in lingual and esophageal squamous cell carcinoma from carcinogen-treated rats, emphasizing their roles in carcinogenesis. Calponin 1 (CNN1, an actin cross-linking regulator) was down-regulated 0.2-fold. Within hours after oral zinc treatment, the abnormal expression of 29 of 33 genes returned to near zinc-sufficient levels, accompanied by reversal of the precancerous phenotype. Thus, we have identified new molecular markers in precancerous esophagus and showed their restoration by zinc replenishment, providing insights into the interaction between zinc and gene expression in esophageal cancer development and prevention.
AuthorsChang-Gong Liu, Liang Zhang, Yubao Jiang, Devjani Chatterjee, Carlo M Croce, Kay Huebner, Louise Y Y Fong
JournalCancer research (Cancer Res) Vol. 65 Issue 17 Pg. 7790-9 (Sep 01 2005) ISSN: 0008-5472 [Print] United States
PMID16140947 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, P.H.S.)
Chemical References
  • Keratin-14
  • Krt14 protein, rat
  • 4-Nitroquinoline-1-oxide
  • Keratins
  • Metallothionein
  • Zinc
Topics
  • 4-Nitroquinoline-1-oxide (pharmacology)
  • Animals
  • Carcinoma, Squamous Cell (etiology, genetics, metabolism)
  • Esophageal Neoplasms (etiology, genetics, metabolism)
  • Gene Expression Regulation, Neoplastic
  • Immunohistochemistry
  • Keratin-14
  • Keratins (biosynthesis, genetics)
  • Male
  • Metallothionein (biosynthesis, genetics)
  • Precancerous Conditions (etiology, genetics, metabolism)
  • Rats
  • Reverse Transcriptase Polymerase Chain Reaction
  • Up-Regulation
  • Zinc (administration & dosage, deficiency)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: