HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Rapid phosphorylation of a syntaxin during the Avr9/Cf-9-race-specific signaling pathway.

Abstract
The tomato (Lycopersicon esculentum) resistance (R) gene Cf-9 is required for resistance to races of the fungal pathogen Cladosporium fulvum expressing the elicitor Avr9 and also confers responsiveness to Avr9 in Cf-9-containing transgenic tobacco (Nicotiana tabacum; Cf9 tobacco). Although protein phosphorylation is required for many early Avr9/Cf-9-signaling events, so far the only phosphorylation targets known in this race-specific signaling pathway are three kinases: the two mitogen-activated protein kinases, wound-induced protein kinase and salicylic acid-induced protein kinase, and the calcium-dependent protein kinase NtCDPK2. Here, we provide evidence that a tobacco syntaxin is rapidly and transiently phosphorylated after Avr9 elicitation. The syntaxin was detected with an antibody against NtSyp121, a plasma membrane-localized syntaxin implicated in abscisic acid responses and secretion. Consistent with the gene-for-gene hypothesis, syntaxin phosphorylation required the presence of both Avr9 and Cf-9. This phosphorylation event occurred either upstream of the pathway leading to reactive oxygen species production or in a parallel pathway. Interestingly, rapid syntaxin phosphorylation was triggered by the race-specific elicitor Avr9 but not by flg22(P.aer), a general elicitor capable of inducing other defense-related signaling events in Cf9 tobacco such as reactive oxygen species production, mitogen-activated protein kinase activation, and PR5 transcript up-regulation. Furthermore, NtSyp121 transcript levels were increased at 24 h after elicitation with Avr9 but not with flg22(P.aer). Because most other previously described Avr9- and flg22(P.aer)-elicited responses are similar, syntaxin phosphorylation and NtSyp121 transcript up-regulation may serve as novel early biochemical and late molecular markers, respectively, to elucidate further differences in the signaling responses between these two elicitors.
AuthorsAntje Heese, Andrea A Ludwig, Jonathan D G Jones
JournalPlant physiology (Plant Physiol) Vol. 138 Issue 4 Pg. 2406-16 (Aug 2005) ISSN: 0032-0889 [Print] United States
PMID16024689 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Topics
  • Gene Expression Regulation, Plant
  • Phosphorylation
  • Plant Leaves
  • Plants, Genetically Modified
  • Signal Transduction
  • Tobacco (genetics, metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: