HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Alleviative effects of pinostrobin against cadmium-induced renal toxicity in rats by reducing oxidative stress, apoptosis, inflammation, and mitochondrial dysfunction.

AbstractIntroduction:
Cadmium (Cd) is a highly toxic heavy metal that can be found everywhere in the environment and can have harmful effects on both human and animal health. Pinostrobin (PSB) is a bioactive natural flavonoid isolated from Boesenbergia rotunda with several pharmacological properties, such as antiinflammatory, anticancer, antioxidant, and antiviral. This investigation was intended to assess the therapeutic potential of PSB against Cd-induced kidney damage in rats.
Methods:
In total, 48 Sprague Dawley rats were divided into four groups: a control, a Cd (5 mg/kg), a Cd + PSB group (5 mg/kg Cd and 10 mg/kg PSB), and a PSB group (10 mg/kg) that received supplementation for 30 days.
Results:
Exposure to Cd led to a decrease in the activities of catalase (CAT), glutathione reductase (GSR), superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX), whereas levels of reactive oxygen species (ROS) and malondialdehyde (MDA) increased. Cd exposure also caused a substantial increase in urea, kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and creatinine levels. Moreover, a noticeable decline was noticed in creatinine clearance. Moreover, Cd exposure considerably increased the levels of inflammatory indices, including interleukin-1b (IL-1b), tumor necrosis factor-a (TNF-a), interleukin-6 (IL-6), nuclear factor kappa-B (NF-kB), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) activity. Cd treatment decreased the expression of the antiapoptotic markers (Bcl-2) while increasing the expression of apoptotic markers (Bax and Caspase-3). Furthermore, Cd treatment substantially reduced the TCA cycle enzyme activity, such as alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, and isocitrate dehydrogenase. Moreover, mitochondrial electron transport chain enzymes, succinatedehydrogenase, NADH dehydrogenase, cytochrome c-oxidase, and coenzyme Q-cytochrome reductase activities were also decreased following Cd exposure. PSB administration substantially reduced the mitochondrial membrane potential while inducing significant histological damage. However, PSB treatment significantly reduced Cd-mediated renal damage in rats.
Conclusion:
Thus, the present investigation discovered that PSB has ameliorative potential against Cd-induced renal dysfunction in rats.
AuthorsMuhammad Umar Ijaz, Sabahat Shahzadi, Ali Hamza, Rabia Azmat, Haseeb Anwar, Tayyaba Afsar, Huma Shafique, Mashooq Ahmad Bhat, Ahmed M Naglah, Mohamed A Al-Omar, Suhail Razak
JournalFrontiers in nutrition (Front Nutr) Vol. 10 Pg. 1175008 ( 2023) ISSN: 2296-861X [Print] Switzerland
PMID37342552 (Publication Type: Journal Article)
CopyrightCopyright © 2023 Ijaz, Shahzadi, Hamza, Azmat, Anwar, Afsar, Shafique, Bhat, Naglah, Al-Omar and Razak.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: