HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Structural interplay between DNA-shape protein recognition and supercoiling: The case of IHF.

Abstract
The integration host factor (IHF) is a prominent example of indirect readout as it imposes one of the strongest bends on relaxed linear DNA. However, the relation between IHF and torsionally constrained DNA, as occurs physiologically, remains unclear. By using atomistic molecular dynamics simulations on DNA minicircles, we reveal, for the first time, the reciprocal influence between a DNA-bending protein and supercoiling. On one hand, the increased curvature of supercoiled DNA enhances wrapping around IHF making the final complex topologically dependent. On the other hand, IHF acts as a 'supercoiling relief' factor by compacting relaxed DNA loops and, when supercoiled, it pins the position of plectonemes in a unique and specific manner. In addition, IHF restrains under- or overtwisted DNA depending on whether the complex is formed in negatively or positively supercoiled DNA, becoming effectively a 'supercoiling buffer'. We finally provide evidence of DNA bridging by IHF and reveal that these bridges divide DNA into independent topological domains. We anticipate that the crosstalk detected here between the 'active' DNA and the multifaceted IHF could be common to other DNA-protein complexes relying on the deformation of DNA.
AuthorsGeorge D Watson, Elliot W Chan, Mark C Leake, Agnes Noy
JournalComputational and structural biotechnology journal (Comput Struct Biotechnol J) Vol. 20 Pg. 5264-5274 ( 2022) ISSN: 2001-0370 [Print] Netherlands
PMID36212531 (Publication Type: Journal Article)
Copyright© 2022 The Author(s).

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: