HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Carbon Fibers as a New Type of Scaffold for Midbrain Organoid Development.

Abstract
The combination of induced pluripotent stem cell (iPSC) technology and 3D cell culture creates a unique possibility for the generation of organoids that mimic human organs in in vitro cultures. The use of iPS cells in organoid cultures enables the differentiation of cells into dopaminergic neurons, also found in the human midbrain. However, long-lasting organoid cultures often cause necrosis within organoids. In this work, we present carbon fibers (CFs) for medical use as a new type of scaffold for organoid culture, comparing them to a previously tested copolymer poly-(lactic-co-glycolic acid) (PLGA) scaffold. We verified the physicochemical properties of CF scaffolds compared to PLGA in improving the efficiency of iPSC differentiation within organoids. The physicochemical properties of carbon scaffolds such as porosity, microstructure, or stability in the cellular environment make them a convenient material for creating in vitro organoid models. Through screening several genes expressed during the differentiation of organoids at crucial brain stages of development, we found that there is a correlation between PITX3, one of the key regulators of terminal differentiation, and the survival of midbrain dopaminergic (mDA) neurons and tyrosine hydroxylase (TH) gene expression. This makes organoids formed on carbon scaffolds an improved model containing mDA neurons convenient for studying midbrain-associated neurodegenerative diseases such as Parkinson's disease.
AuthorsAnna Tejchman, Agnieszka Znój, Paula Chlebanowska, Aneta Frączek-Szczypta, Marcin Majka
JournalInternational journal of molecular sciences (Int J Mol Sci) Vol. 21 Issue 17 (Aug 19 2020) ISSN: 1422-0067 [Electronic] Switzerland
PMID32825046 (Publication Type: Journal Article)
Chemical References
  • Acrylic Resins
  • Carbon Fiber
  • Homeodomain Proteins
  • Transcription Factors
  • homeobox protein PITX3
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • polyacrylonitrile
  • Tyrosine 3-Monooxygenase
Topics
  • Acrylic Resins (chemistry)
  • Carbon Fiber (chemistry)
  • Cell Differentiation
  • Cells, Cultured
  • Dopaminergic Neurons (cytology, metabolism)
  • Homeodomain Proteins (genetics, metabolism)
  • Humans
  • Induced Pluripotent Stem Cells (cytology, metabolism)
  • Mesencephalon (cytology)
  • Organoids (cytology, metabolism)
  • Polylactic Acid-Polyglycolic Acid Copolymer (chemistry)
  • Tissue Engineering (methods)
  • Tissue Scaffolds (adverse effects, chemistry)
  • Transcription Factors (genetics, metabolism)
  • Tyrosine 3-Monooxygenase (genetics, metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: