HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Swim bladder collagen forms hydrogel with macroscopic superstructure by diffusion induced fast gelation.

Abstract
Marine collagen has been attracting attention as a medical material in recent times due to the low risk of pathogen infection compared to animal collagen. Type I collagen extracted from the swim bladder of Bester sturgeon fish has excellent characteristics such as high denaturation temperature, high solubility, low viscosity and an extremely fast rate to form large bundle of fibers under certain conditions. These specific characteristics of swim bladder collagen (SBC) permit us to create stable, disk shaped hydrogels with concentric orientation of collagen fibers by the controlled diffusion of neutral buffer through collagen solution at room temperature. However, traditionally used animal collagens, e.g. calf skin collagen (CSC) and porcine skin collagen (PSC), could not form any stable and oriented structure by this method. The mechanism of the superstructure formation of SBC by a diffusion induced gelation process has been explored. The fast fibrillogenesis rate of SBC causes a quick squeezing out of the solvent from the gel phase to the sol phase during gelation, which builds an internal stress at the gel-sol interface. The tensile stress induces the collagen molecules of the gel phase to align along the gel-sol interface direction to give this concentric ring-shaped orientation pattern. On the other hand, the slow fibrillogenesis rate of animal collagens due to the high viscosity of the solution does not favor the ordered structure formation. The denaturation temperature of SBC increases significantly from 31 °C to 43 °C after gelation, whereas that of CSC and PSC were found to increase a little. Rheology experiment shows that the SBC gel has storage modulus larger than 15 kPa. The SBC hydrogels with thermal and mechanical stability have potential as bio-materials for tissue engineering applications.
AuthorsMd Tariful Islam Mredha , Xi Zhang , Takayuki Nonoyama , Tasuku Nakajima , Takayuki Kurokawa , Yasuaki Takagi , Jian Ping Gong
JournalJournal of materials chemistry. B (J Mater Chem B) Vol. 3 Issue 39 Pg. 7658-7666 (Oct 21 2015) ISSN: 2050-7518 [Electronic] England
PMID32264576 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: