HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

PCC0208017, a novel small-molecule inhibitor of MARK3/MARK4, suppresses glioma progression in vitro and in vivo.

Abstract
Gliomas are the most common primary intracranial neoplasms among all brain malignancies, and the microtubule affinity regulating kinases (MARKs) have become potential drug targets for glioma. Here, we report a novel dual small-molecule inhibitor of MARK3 and MARK4, designated as PCC0208017. In vitro, PCC0208017 strongly inhibited kinase activity against MARK3 and MARK4, and strongly reduced proliferation in three glioma cell lines. This compound attenuated glioma cell migration, glioma cell invasion, and angiogenesis. Molecular mechanism studies revealed that PCC0208017 decreased the phosphorylation of Tau, disrupted microtubule dynamics, and induced a G2/M phase cell cycle arrest. In an in vivo glioma model, PCC0208017 showed robust anti-tumor activity, blood-brain barrier permeability, and a good oral pharmacokinetic profile. Molecular docking studies showed that PCC0208017 exhibited high binding affinity to MARK3 and MARK4. Taken together, our study describes for the first time that PCC0208017, a novel MARK3/MARK4 inhibitor, might be a promising lead compound for treatment of glioma.
AuthorsFangfang Li, Zongliang Liu, Heyuan Sun, Chunmei Li, Wenyan Wang, Liang Ye, Chunhong Yan, Jingwei Tian, Hongbo Wang
JournalActa pharmaceutica Sinica. B (Acta Pharm Sin B) Vol. 10 Issue 2 Pg. 289-300 (Feb 2020) ISSN: 2211-3835 [Print] Netherlands
PMID32082974 (Publication Type: Journal Article)
Copyright© 2020 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: