HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Polymeric Core-Shell Combinatorial Nanomedicine for Synergistic Anticancer Therapy.

Abstract
Core-shell nanostructures are promising platforms for combination drug delivery. However, their complicated synthesis process, poor stability, surface engineering, and low biocompatibility are major hurdles. Herein, a carboxymethyl chitosan-coated poly(lactide-co-glycolide) (cmcPLGA) core-shell nanostructure is prepared via a simple one-step nanoprecipitation self-assembly process. Engineered core-shell nanostructures are tested for combination delivery of loaded docetaxel and doxorubicin in a cancer-mimicked environment. The drugs are compartmentalized in a shell (doxorubicin, Dox) and a core (docetaxel, Dtxl) with loading contents of ∼1.2 and ∼2.06%, respectively. Carboxymethyl chitosan with both amine and carboxyl groups act as a polyampholyte in diminishing ΞΆ-potential of nanoparticles from fairly negative (-13 mV) to near neutral (-2 mV) while moving from a physiological pH (7.4) to an acidic tumor pH (6) that can help the nanoparticles to accumulate and release the drug on-site. The dual-drug formulation was found to carry a clinically comparable 1.7:1 weight ratio of Dtxl/Dox, nanoengineered for the sequential release of Dox followed by Dtxl. Single and engineered combinatorial nanoformulations show better growth inhibition toward three different cancer cells compared to free drug treatment. Importantly, Dox-Dtxl cmcPLGA nanoparticles scored synergism with combination index values between 0.2 and 0.3 in BT549 (breast ductal carcinoma), PC3 (prostate cancer), and A549 (lung adenocarcinoma) cell lines, demonstrating significant cell growth inhibition at lower drug concentrations as compared to single-drug control groups. The observed promising performance of dual-drug formulation is due to the G2/M phase arrest and apoptosis.
AuthorsAsifkhan Shanavas, Nishant K Jain, Navneet Kaur, Dinesh Thummuri, Maruthi Prasanna, Rajendra Prasad, Vegi Ganga Modi Naidu, Dhirendra Bahadur, Rohit Srivastava
JournalACS omega (ACS Omega) Vol. 4 Issue 22 Pg. 19614-19622 (Nov 26 2019) ISSN: 2470-1343 [Electronic] United States
PMID31788591 (Publication Type: Journal Article)
CopyrightCopyright © 2019 American Chemical Society.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: