HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Evaluation of an in vitro coronary stent thrombosis model for preclinical assessment.

Abstract
Stent thrombosis remains an infrequent but significant complication following percutaneous coronary intervention. Preclinical models to rapidly screen and validate therapeutic compounds for efficacy are lacking. Herein, we describe a reproducible, high throughput and cost-effective method to evaluate candidate therapeutics and devices for either treatment or propensity to develop stent thrombosis in an in vitro bench-top model. Increasing degree of stent malapposition (0.00 mm, 0.10 mm, 0.25 mm and 0.50 mm) was associated with increasing thrombosis and luminal area occlusion (4.1 ± 0.5%, 6.3 ± 0.5%, 19.7 ± 4.5%, and 92.6 ± 7.4%, p < 0.0001, respectively). Differences in stent design in the form of bare-metal, drug-eluting, and bioresorbable vascular scaffolds demonstrated differences in stent thrombus burden (14.7 ± 3.8% vs. 20.5 ± 3.1% vs. 86.8 ± 5.3%, p < 0.01, respectively). Finally, thrombus burden was significantly reduced when healthy blood samples were incubated with Heparin, ASA/Ticagrelor (DAPT), and Heparin+DAPT compared to control (DMSO) at 4.1 ± 0.6%, 6.9 ± 1.7%, 4.5 ± 1.2%, and 12.1 ± 1.8%, respectively (p < 0.01). The reported model produces high throughput reproducible thrombosis results across a spectrum of antithrombotic agents, stent design, and degrees of apposition. Importantly, performance recapitulates clinical observations of antiplatelet/antithrombotic regimens as well as device and deployment characteristics. Accordingly, this model may serve as a screening tool for candidate therapies in preclinical evaluation.
AuthorsDylan Perry-Nguyen, Richard G Jung, Alisha Labinaz, Anne-Claire Duchez, Omar Dewidar, Trevor Simard, Denuja Karunakaran, Kamran Majeed, Kiran Sarathy, Ruonan Li, F Daniel Ramirez, Pietro Di Santo, Rebecca Rochman, Derek So, Nicolas Foin, Benjamin Hibbert
JournalPlatelets (Platelets) Vol. 31 Issue 2 Pg. 167-173 ( 2020) ISSN: 1369-1635 [Electronic] England
PMID30973035 (Publication Type: Evaluation Study, Journal Article)
Chemical References
  • Enzymes
  • Platelet Aggregation Inhibitors
Topics
  • Blood Physiological Phenomena (drug effects)
  • Coronary Thrombosis (complications, diagnostic imaging, enzymology, etiology)
  • Drug-Eluting Stents (adverse effects)
  • Enzymes (blood)
  • Humans
  • In Vitro Techniques
  • Models, Biological
  • Percutaneous Coronary Intervention (adverse effects)
  • Platelet Aggregation Inhibitors (therapeutic use)
  • Stents (adverse effects)
  • Thrombosis (blood, complications, enzymology)
  • Tomography, Optical Coherence

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: