HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

A Novel Lactate Dehydrogenase Inhibitor, 1-(Phenylseleno)-4-(Trifluoromethyl) Benzene, Suppresses Tumor Growth through Apoptotic Cell Death.

Abstract
The Warburg effect, wherein cancer cells prefer glycolysis rather than oxidative phosphorylation even under normoxic conditions, is a major characteristic of malignant tumors. Lactate dehydrogenase A (LDHA) is the main enzyme regulating the Warburg effect, and is thus, a major target for novel anti-cancer drug development. Through our ongoing screening of novel inhibitors, we found that several selenobenzene compounds have inhibitory effects on LDHA activity. Among them, 1-(phenylseleno)-4-(trifluoromethyl) benzene (PSTMB) had the most potent inhibitory effect on the enzymatic activity of LDHA. The results from biochemical assays and computational modeling showed that PSTMB inhibited LDHA activity. In addition, PSTMB inhibited the growth of several tumor cell lines, including NCI-H460, MCF-7, Hep3B, A375, HT29, and LLC. In HT29 human colon cancer cells, PSTMB dose-dependently inhibited the viability of the cells and activity of LDHA, without affecting the expression of LDHA. Under both normoxic and hypoxic conditions, PSTMB effectively reduced LDHA activity and lactate production. Furthermore, PSTMB induced mitochondria-mediated apoptosis of HT29 cells via production of reactive oxygen species. These results suggest that PSTMB may be a novel candidate for development of anti-cancer drugs by targeting cancer metabolism.
AuthorsEun-Yeong Kim, Tae-Wook Chung, Chang Woo Han, So Young Park, Kang Hyun Park, Se Bok Jang, Ki-Tae Ha
JournalScientific reports (Sci Rep) Vol. 9 Issue 1 Pg. 3969 (03 08 2019) ISSN: 2045-2322 [Electronic] England
PMID30850682 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Antineoplastic Agents
  • Reactive Oxygen Species
  • L-Lactate Dehydrogenase
  • Benzene
Topics
  • Antineoplastic Agents (pharmacology)
  • Apoptosis (drug effects)
  • Benzene (pharmacology)
  • Cell Death (drug effects)
  • Cell Line, Tumor
  • Cell Proliferation (drug effects)
  • HT29 Cells
  • Humans
  • L-Lactate Dehydrogenase (antagonists & inhibitors)
  • MCF-7 Cells
  • Neoplasms (drug therapy, metabolism)
  • Reactive Oxygen Species (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: