HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Noninvasive Imaging Biomarker Identifies Small Airway Damage in Severe Chronic Obstructive Pulmonary Disease.

Abstract
Rationale: Evidence suggests damage to small airways is a key pathologic lesion in chronic obstructive pulmonary disease (COPD). Computed tomography densitometry has been demonstrated to identify emphysema, but no such studies have been performed linking an imaging metric to small airway abnormality.Objectives: To correlate ex vivo parametric response mapping (PRM) analysis to in vivo lung tissue measurements of patients with severe COPD treated by lung transplantation and control subjects.Methods: Resected lungs were inflated, frozen, and systematically sampled, generating 33 COPD (n = 11 subjects) and 22 control tissue samples (n = 3 subjects) for micro-computed tomography analysis of terminal bronchioles (TBs; last generation of conducting airways) and emphysema.Measurements and Main Results: PRM analysis was conducted to differentiate functional small airways disease (PRMfSAD) from emphysema (PRMEmph). In COPD lungs, TB numbers were reduced (P = 0.01); surviving TBs had increased wall area percentage (P < 0.001), decreased circularity (P < 0.001), reduced cross-sectional luminal area (P < 0.001), and greater airway obstruction (P = 0.008). COPD lungs had increased airspace size (P < 0.001) and decreased alveolar surface area (P < 0.001). Regression analyses demonstrated unique correlations between PRMfSAD and TBs, with decreased circularity (P < 0.001), decreased luminal area (P < 0.001), and complete obstruction (P = 0.008). PRMEmph correlated with increased airspace size (P < 0.001), decreased alveolar surface area (P = 0.003), and fewer alveolar attachments per TB (P = 0.01).Conclusions: PRMfSAD identifies areas of lung tissue with TB loss, luminal narrowing, and obstruction. This is the first confirmation that an imaging biomarker can identify terminal bronchial pathology in established COPD and provides a noninvasive imaging methodology to identify small airway damage in COPD.
AuthorsDragoş M Vasilescu, Fernando J Martinez, Nathaniel Marchetti, Craig J Galbán, Charles Hatt, Catherine A Meldrum, Chandra Dass, Naoya Tanabe, Rishindra M Reddy, Amir Lagstein, Brian D Ross, Wassim W Labaki, Susan Murray, Xia Meng, Jeffrey L Curtis, Tillie L Hackett, Ella A Kazerooni, Gerard J Criner, James C Hogg, MeiLan K Han
JournalAmerican journal of respiratory and critical care medicine (Am J Respir Crit Care Med) Vol. 200 Issue 5 Pg. 575-581 (09 01 2019) ISSN: 1535-4970 [Electronic] United States
PMID30794432 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.)
Chemical References
  • Biomarkers
Topics
  • Adult
  • Aged
  • Aged, 80 and over
  • Airway Obstruction (diagnostic imaging)
  • Biomarkers
  • Cross-Sectional Studies
  • Female
  • Humans
  • Male
  • Middle Aged
  • Pulmonary Disease, Chronic Obstructive (physiopathology)
  • X-Ray Microtomography (methods)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: