HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Arginase overexpression in neurons and its effect on traumatic brain injury.

Abstract
Arginine is a semi-essential amino acid which serves as a substrate for nitric oxide (NO) production by nitric oxide synthase (NOS) and a precursor for various metabolites including ornithine, creatine, polyamines, and agmatine. Arginase competes with nitric oxide synthase for substrate arginine to produce orthinine and urea. There is contradictory evidence in the literature on the role of nitric oxide in the pathophysiology of traumatic brain injury (TBI). These contradictory perspectives are likely due to different NOS isoforms - endothelial (eNOS), inducible (iNOS) and neuronal (nNOS) which are expressed in the central nervous system. Of these, the role of nNOS in acute injury remains less clear. This study aimed to employ a genetic approach by overexpressing arginase isoforms specifically in neurons using a Thy-1 promoter to manipulate cell autonomous NO production in the context of TBI. The hypothesis was that increased arginase would divert arginine from pathological NO production. We generated 2 mouse lines that overexpress arginase I (a cytoplasmic enzyme) or arginase II (a mitochondrial enzyme) in neurons of FVB mice. We found that two-weeks after induction of controlled cortical injury, overexpressing arginase I but not arginase II in neurons significantly reduced contusion size and contusion index compared to wild-type (WT) mice. This study establishes enhanced neuronal arginase levels as a strategy to affect the course of TBI and provides support for the potential role of neuronal NO production in this condition.
AuthorsSimran Madan, Bettina Kron, Zixue Jin, George Al Shamy, Philippe M Campeau, Qin Sun, Shan Chen, Leela Cherian, Yuqing Chen, Elda Munivez, Ming-Ming Jiang, Claudia Robertson, Clay Goodman, Rajiv R Ratan, Brendan Lee
JournalMolecular genetics and metabolism (Mol Genet Metab) Vol. 125 Issue 1-2 Pg. 112-117 (09 2018) ISSN: 1096-7206 [Electronic] United States
PMID30055993 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2018 Elsevier Inc. All rights reserved.
Chemical References
  • Thy-1 Antigens
  • Nitric Oxide
  • Arginine
  • Nitric Oxide Synthase Type I
  • Nitric Oxide Synthase Type II
  • Nitric Oxide Synthase Type III
  • Arginase
Topics
  • Animals
  • Arginase (genetics)
  • Arginine (metabolism)
  • Brain Injuries, Traumatic (genetics, pathology)
  • Cell Line
  • Disease Models, Animal
  • Gene Expression Regulation, Enzymologic
  • Humans
  • Mice
  • Neurons (enzymology, pathology)
  • Nitric Oxide (genetics, metabolism)
  • Nitric Oxide Synthase Type I (genetics)
  • Nitric Oxide Synthase Type II (genetics)
  • Nitric Oxide Synthase Type III (genetics)
  • Thy-1 Antigens (genetics)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: