HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Receptor, Ligand and Transducer Contributions to Dopamine D2 Receptor Functional Selectivity.

Abstract
Functional selectivity (or biased agonism) is a property exhibited by some G protein-coupled receptor (GPCR) ligands, which results in the modulation of a subset of a receptor's signaling capabilities and more precise control over complex biological processes. The dopamine D2 receptor (D2R) exhibits pleiotropic responses to the biogenic amine dopamine (DA) to mediate complex central nervous system functions through activation of G proteins and β-arrestins. D2R is a prominent therapeutic target for psychological and neurological disorders in which DA biology is dysregulated and targeting D2R with functionally selective drugs could provide a means by which pharmacotherapies could be developed. However, factors that determine GPCR functional selectivity in vivo may be multiple with receptors, ligands and transducers contributing to the process. We have recently described a mutagenesis approach to engineer biased D2R mutants in which G protein-dependent ([Gprot]D2R) and β-arrestin-dependent signaling ([βarr]D2R) were successfully separated (Peterson, et al. PNAS, 2015). Here, permutations of these mutants were used to identify critical determinants of the D2R signaling complex that impart signaling bias in response to the natural or synthetic ligands. Critical residues identified in generating [Gprot]D2R and [βarr]D2R conferred control of partial agonism at G protein and/or β-arrestin activity. Another set of mutations that result in G protein bias was identified that demonstrated that full agonists can impart unique activation patterns, and provided further credence to the concept of ligand texture. Finally, the contributions and interplay between different transducers indicated that G proteins are not aberrantly activated, and that receptor kinase and β-arrestin activities are inextricably linked. These data provide a thorough elucidation of the feasibility and malleability of D2R functional selectivity and point to means by which novel in vivo therapies could be modeled.
AuthorsSean M Peterson, Thomas F Pack, Marc G Caron
JournalPloS one (PLoS One) Vol. 10 Issue 10 Pg. e0141637 ( 2015) ISSN: 1932-6203 [Electronic] United States
PMID26516769 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Chemical References
  • Arrestins
  • DRD2 protein, human
  • Ligands
  • Receptors, Dopamine D2
  • beta-Arrestins
  • GTP-Binding Proteins
  • Dopamine
Topics
  • Arrestins (chemistry, metabolism)
  • Binding Sites
  • Dopamine (metabolism)
  • GTP-Binding Proteins (chemistry, metabolism)
  • HEK293 Cells
  • Humans
  • Ligands
  • Models, Molecular
  • Mutagenesis
  • Receptors, Dopamine D2 (chemistry, genetics, metabolism)
  • Signal Transduction
  • beta-Arrestins

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: