HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Lentivirus-induced knockdown of LRP1 induces osteoarthritic-like effects and increases susceptibility to apoptosis in chondrocytes via the nuclear factor-κB pathway.

Abstract
Low-density lipoprotein receptor-related protein 1 (LRP1) is known to regulate cell survival and inflammation. The present study investigated the involvement of LRP1 in the regulation of tumor necrosis factor (TNF)-α-induced expression of matrix metalloproteinase (MMP)-13. Furthermore, the study aimed to elucidate the mechanisms underlying the effects of LRP1 on TNF-α-induced inflammation and apoptosis of chondrocytes. Lentivirus-mediated RNA interference techniques were used to knockdown the LRP1 gene. Subsequently, the effects of LRP1 on TNF-α-induced MMP-13 expression were determined using quantitative polymerase chain reaction, western blot analysis and ELISA. Furthermore, the TNF-α-induced intracellular pathway was investigated using a nuclear factor (NF)-κB inhibitor (Bay 11-7082). In addition, the effect of LRP1 regulation on growth and apoptosis in chondrocytes was investigated using western blot analysis and a TUNEL assay. LRP1 knockdown was shown to increase TNF-α-induced MMP-13 expression via the activation of the NF-κB (p65) pathway, which reduced the expression of collagen type II and cell viability. In addition, LRP1 inhibited cell apoptosis by increasing the expression of phospho-Akt and B-cell lymphoma 2 (Bcl-2), while suppressing the expression of caspase-3 and Bcl-2-associated X protein. The results of the present study indicated that LRP1 was able to inhibit TNF-α-induced apoptosis and inflammation in chondrocytes. Therefore, LRP1 may be an effective osteoarthritis inhibitor, potentially providing a novel approach for antiarthritic therapeutics.
AuthorsErping Yang, Huifeng Zheng, Hao Peng, Yinyuan Ding
JournalExperimental and therapeutic medicine (Exp Ther Med) Vol. 10 Issue 1 Pg. 97-105 (Jul 2015) ISSN: 1792-0981 [Print] Greece
PMID26170918 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: