HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

High IGF2 expression is associated with poor clinical outcome in human ovarian cancer.

Abstract
Ovarian cancer is one of the most common types of cancer in females and is the leading cause of death among gynaecological cancers in women worldwide. In the present study, we identified insulin-like growth factor 2 (IGF2) as a differentially expressed gene between cancerous and non-cancerous ovarian tissues. IGF2 was frequently increased in the human ovarian cancers when compared to the frequency in the non-cancerous ovarian tissues both at the mRNA (30/35) and protein level (61/72). The mean level of IGF2 in the tumor tissues was markedly higher than that in the non-cancerous tissues (nearly 3-fold change) (P=0.000). There was a significant correlation of IGF2 expression with histological grade (P=0.047). Kaplan-Meier analysis indicated that the ovarian cancer patients with high IGF2 expression showed a poorer prognosis both in regards to overall survival (OS) and progression-free survival (PFS) (n=1,648, P=0.000). Further analysis revealed that high expression of IGF2 was an unfavorable factor for the prognosis of the ovarian cancer patients at clinical stage I + II, stage III, histological grade 2, grade 3 or those treated with chemotherapy containing platin and Taxol. Our data provide evidence that IGF2 expression is frequently increased in ovarian cancer tissues, and high expression of IGF2 may be a significant prognostic factor for poor survival in ovarian cancer patients.
AuthorsYan Dong, Jianjun Li, Fei Han, Hongqiang Chen, Xiaoxin Zhao, Qin Qin, Ronghui Shi, Jinyi Liu
JournalOncology reports (Oncol Rep) Vol. 34 Issue 2 Pg. 936-42 (Aug 2015) ISSN: 1791-2431 [Electronic] Greece
PMID26063585 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Biomarkers, Tumor
  • IGF2 protein, human
  • Insulin-Like Growth Factor II
Topics
  • Adult
  • Aged
  • Biomarkers, Tumor (genetics, metabolism)
  • Female
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Insulin-Like Growth Factor II (genetics, metabolism)
  • Middle Aged
  • Ovarian Neoplasms (genetics, metabolism, pathology)
  • Prognosis
  • Survival Analysis
  • Up-Regulation

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: