HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Pharmacokinetics of dexmedetomidine combined with therapeutic hypothermia in a piglet asphyxia model.

AbstractBACKGROUND:
The highly selective α2 -adrenoreceptor agonist, dexmedetomidine, exerts neuroprotective, analgesic, anti-inflammatory and sympatholytic properties that may be beneficial for perinatal asphyxia. The optimal safe dose for pre-clinical newborn neuroprotection studies is unknown.
METHODS:
Following cerebral hypoxia-ischaemia, dexmedetomidine was administered to nine newborn piglets in a de-escalation dose study in combination with hypothermia (whole body cooling to 33.5°C). Dexmedetomidine was administered with a loading dose of 1 μg/kg and maintenance infusion at doses from 10 to 0.6 μg/kg/h. One additional piglet was not subjected to hypoxia-ischaemia. Blood for pharmacokinetic analysis was sampled pre-insult and frequently post-insult. A one-compartment linear disposition model was used to fit data. Population parameter estimates were obtained using non-linear mixed effects modelling.
RESULTS:
All dexmedetomidine infusion regimens led to plasma concentrations above those associated with sedation in neonates and children (0.4-0.8 μg/l). Seven out of the nine piglets with hypoxia-ischaemia experienced periods of bradycardia, hypotension, hypertension and cardiac arrest; all haemodynamic adverse events occurred in piglets with plasma concentrations greater than 1 μg/l. Dexmedetomidine clearance was 0.126 l/kg/h [coefficient of variation (CV) 46.6.%] and volume of distribution was 3.37 l/kg (CV 191%). Dexmedetomidine clearance was reduced by 32.7% at a temperature of 33.5°C. Dexmedetomidine clearance was reduced by 55.8% following hypoxia-ischaemia.
CONCLUSIONS:
Dexmedetomidine clearance was reduced almost tenfold compared with adult values in the newborn piglet following hypoxic-ischaemic brain injury and subsequent therapeutic hypothermia. Reduced clearance was related to cumulative effects of both hypothermia and exposure to hypoxia. High plasma levels of dexmedetomidine were associated with major cardiovascular complications.
AuthorsM Ezzati, K Broad, G Kawano, S Faulkner, J Hassell, B Fleiss, P Gressens, I Fierens, J Rostami, M Maze, J W Sleigh, B Anderson, R D Sanders, N J Robertson
JournalActa anaesthesiologica Scandinavica (Acta Anaesthesiol Scand) Vol. 58 Issue 6 Pg. 733-42 (Jul 2014) ISSN: 1399-6576 [Electronic] England
PMID24724965 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Copyright© 2014 The Authors. The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Chemical References
  • Adrenergic alpha-2 Receptor Agonists
  • Neuroprotective Agents
  • Dexmedetomidine
Topics
  • Adrenergic alpha-2 Receptor Agonists (blood, pharmacokinetics, therapeutic use)
  • Animals
  • Asphyxia Neonatorum (complications)
  • Dexmedetomidine (blood, pharmacokinetics, therapeutic use)
  • Disease Models, Animal
  • Hypothermia, Induced
  • Hypoxia-Ischemia, Brain (drug therapy, etiology)
  • Male
  • Metabolic Clearance Rate
  • Neuroprotective Agents (blood, pharmacokinetics, therapeutic use)
  • Nonlinear Dynamics
  • Sus scrofa
  • Swine

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: